{"title":"C-myc modulates the replication of RGNNV via glutamine-mediated ATP production in grouper fin cells","authors":"","doi":"10.1016/j.aaf.2023.05.005","DOIUrl":null,"url":null,"abstract":"<div><div><em>C-myc</em> is a proto-oncogene that plays an important role in a variety of diseases. There were a lot of research on the correlation between C-myc and human viruses. However, the study about <em>C-myc</em> related to aquatic species virus is very limited. In the present study, the qRT-PCR, cellular immunofluorescence and western blotting determination data reported that <em>C-myc</em> and glutaminase (<em>GLS</em>) genes were significantly upregulated when grouper fin cells (GF-1) were infected with red grouper nervous necrosis virus (RGNNV). After knocking down the <em>C-myc</em> gene, the mRNA and protein levels of <em>GLS</em>, capsid protein (<em>CP</em>) and RNA polymerase (<em>RdRp</em>) of RGNNV were significantly reduced in RGNNV-infected GF-1 cells and the overexpression of the <em>C-myc</em> gene remarkably promoted these genes, which indicated that the replication of the virus and <em>GLS</em> gene were positively regulated by <em>C-myc</em> in RGNNV-infected GF-1 cells. In addition, supplementation of exogenous ATP can partially restore viral replication when RGNNV-infected GF-1 cells were cultured in glutamine-free medium, which confirmed that the glutamine was decomposed into ATP to provide energy for viral replication. Further studies confirmed that overexpression of <em>C-myc</em> can increase the content of ATP in normal cells. To sum up, these data suggested that activation of <em>C-myc</em> gene affected viral replication by regulating <em>GLS</em> expression to drive glutamine dissolution.</div></div>","PeriodicalId":36894,"journal":{"name":"Aquaculture and Fisheries","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2024-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Aquaculture and Fisheries","FirstCategoryId":"1091","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2468550X23000771","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"Agricultural and Biological Sciences","Score":null,"Total":0}
引用次数: 0
Abstract
C-myc is a proto-oncogene that plays an important role in a variety of diseases. There were a lot of research on the correlation between C-myc and human viruses. However, the study about C-myc related to aquatic species virus is very limited. In the present study, the qRT-PCR, cellular immunofluorescence and western blotting determination data reported that C-myc and glutaminase (GLS) genes were significantly upregulated when grouper fin cells (GF-1) were infected with red grouper nervous necrosis virus (RGNNV). After knocking down the C-myc gene, the mRNA and protein levels of GLS, capsid protein (CP) and RNA polymerase (RdRp) of RGNNV were significantly reduced in RGNNV-infected GF-1 cells and the overexpression of the C-myc gene remarkably promoted these genes, which indicated that the replication of the virus and GLS gene were positively regulated by C-myc in RGNNV-infected GF-1 cells. In addition, supplementation of exogenous ATP can partially restore viral replication when RGNNV-infected GF-1 cells were cultured in glutamine-free medium, which confirmed that the glutamine was decomposed into ATP to provide energy for viral replication. Further studies confirmed that overexpression of C-myc can increase the content of ATP in normal cells. To sum up, these data suggested that activation of C-myc gene affected viral replication by regulating GLS expression to drive glutamine dissolution.