{"title":"Capillary electrophoresis-integrated immobilized enzyme reactors","authors":"Xiaoxia Liu, Jiqing Yang, Li Yang","doi":"10.1515/revac-2016-0003","DOIUrl":null,"url":null,"abstract":"Abstract Online enzyme assay based on capillary electrophoresis (CE) offers several advantages for the assay, such as low consumption of samples, easy automation of all steps, and less requirement of sample work-up. As a widely used approach for online enzyme assay, CE-integrated immobilized enzyme microreactor (IMER) has been applied in almost all aspects of enzyme assays during the past two decades, including evaluation of the enzymatic activity and kinetics, screening of inhibitor, investigation of enzyme-mediated metabolic pathways, and proteome analysis. In a CE-integrated IMER, enzyme is bound to the capillary surface or a suitable carrier attached to the capillary and substrates/products of the enzymatic reaction are separated and online detected by CE at downstream of the capillary. Enzymatic reactions can be viewed as interaction between the stationary phase (immobilized enzyme) and the mobile phase (substrate(s)/co-enzyme(s) solution), in analogy to the well-known separation technique, capillary electrochromatography. From this point of view, CE-integrated IMERs can be categorized into open tubular capillary IMER, monolithic IMER, and packed capillary IMER. In this review, we have surveyed, analyzed, and discussed advances on fabrication techniques of the three categories of CE-integrated IMERs for online assays involving various enzymes in the past two decades (1992–2015). Some recent studies using microfluidic-based IMERs for enzyme assays have also been reviewed.","PeriodicalId":21090,"journal":{"name":"Reviews in Analytical Chemistry","volume":"89 1","pages":"115 - 131"},"PeriodicalIF":3.8000,"publicationDate":"2016-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"19","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Reviews in Analytical Chemistry","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1515/revac-2016-0003","RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, ANALYTICAL","Score":null,"Total":0}
引用次数: 19
Abstract
Abstract Online enzyme assay based on capillary electrophoresis (CE) offers several advantages for the assay, such as low consumption of samples, easy automation of all steps, and less requirement of sample work-up. As a widely used approach for online enzyme assay, CE-integrated immobilized enzyme microreactor (IMER) has been applied in almost all aspects of enzyme assays during the past two decades, including evaluation of the enzymatic activity and kinetics, screening of inhibitor, investigation of enzyme-mediated metabolic pathways, and proteome analysis. In a CE-integrated IMER, enzyme is bound to the capillary surface or a suitable carrier attached to the capillary and substrates/products of the enzymatic reaction are separated and online detected by CE at downstream of the capillary. Enzymatic reactions can be viewed as interaction between the stationary phase (immobilized enzyme) and the mobile phase (substrate(s)/co-enzyme(s) solution), in analogy to the well-known separation technique, capillary electrochromatography. From this point of view, CE-integrated IMERs can be categorized into open tubular capillary IMER, monolithic IMER, and packed capillary IMER. In this review, we have surveyed, analyzed, and discussed advances on fabrication techniques of the three categories of CE-integrated IMERs for online assays involving various enzymes in the past two decades (1992–2015). Some recent studies using microfluidic-based IMERs for enzyme assays have also been reviewed.
期刊介绍:
Reviews in Analytical Chemistry publishes authoritative reviews by leading experts in the dynamic field of chemical analysis. The subjects can encompass all branches of modern analytical chemistry such as spectroscopy, chromatography, mass spectrometry, electrochemistry and trace analysis and their applications to areas such as environmental control, pharmaceutical industry, automation and other relevant areas. Review articles bring the expert up to date in a concise manner and provide researchers an overview of new techniques and methods.