Jinjiang Yu, C. Chao, Ching-Hsiang Cheng, Qingjun Liu, Lidan Xiao, Mo Yang
{"title":"Micro chip with nanostructured membranes for cell morphology monitoring","authors":"Jinjiang Yu, C. Chao, Ching-Hsiang Cheng, Qingjun Liu, Lidan Xiao, Mo Yang","doi":"10.1109/NANO.2007.4601195","DOIUrl":null,"url":null,"abstract":"We present a novel nanostructured micro cell chip with impedance spectroscopy for monitoring cell morphology change non-invasively, in real time and independent of any fluorescent or radioactive probes. The key strategy is to integrate the nanoporous alumina membrane with silicon based microfluidic devices for the impedance monitoring. In this configuration, the impedance of even single cell can be measured at the low frequency range but not be affected by the electrode polarization. The KYSE30 human oesophageal cancer cells have been successfully cultured on nanoporous alumina membrane. Initial electrochemical experiments with lipid layers have been done to testify the functionality of this device. Further experiments for cancer cells will be explored in near future.","PeriodicalId":6415,"journal":{"name":"2007 7th IEEE Conference on Nanotechnology (IEEE NANO)","volume":"18 1","pages":"304-307"},"PeriodicalIF":0.0000,"publicationDate":"2007-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2007 7th IEEE Conference on Nanotechnology (IEEE NANO)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/NANO.2007.4601195","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
We present a novel nanostructured micro cell chip with impedance spectroscopy for monitoring cell morphology change non-invasively, in real time and independent of any fluorescent or radioactive probes. The key strategy is to integrate the nanoporous alumina membrane with silicon based microfluidic devices for the impedance monitoring. In this configuration, the impedance of even single cell can be measured at the low frequency range but not be affected by the electrode polarization. The KYSE30 human oesophageal cancer cells have been successfully cultured on nanoporous alumina membrane. Initial electrochemical experiments with lipid layers have been done to testify the functionality of this device. Further experiments for cancer cells will be explored in near future.