A multilevel information fusion approach for road congestion detection in VANETs

Linjuan Zhang , Deyun Gao , Weicheng Zhao , Han-Chieh Chao
{"title":"A multilevel information fusion approach for road congestion detection in VANETs","authors":"Linjuan Zhang ,&nbsp;Deyun Gao ,&nbsp;Weicheng Zhao ,&nbsp;Han-Chieh Chao","doi":"10.1016/j.mcm.2013.02.004","DOIUrl":null,"url":null,"abstract":"<div><p>As city road congestion problems become more serious, many researchers have started to use the technique of vehicle ad hoc networks (VANETs) for road congestion detection. However, various on-board sensors equipped in vehicles may generate lots of atomic messages, which usually cause serious channel competition problems. In this paper, we propose a multilevel information fusion approach by combining the fuzzy clustering-based feature level information fusion (FCMA) and the modified Dempster–Shafer evidence reasoning-based decision level information fusion (D-SEMA). The FCMA can extract the key features from atomic messages, thereby greatly reducing the network traffic load. Furthermore, the D-SEMA mechanism is used to judge whether the road congestion event occurs. Performance analysis and simulation results under ONE simulator show that the proposed multilevel information fusion approach can detect road congestion efficiently with low bandwidth consumption.</p></div>","PeriodicalId":49872,"journal":{"name":"Mathematical and Computer Modelling","volume":"58 5","pages":"Pages 1206-1221"},"PeriodicalIF":0.0000,"publicationDate":"2013-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1016/j.mcm.2013.02.004","citationCount":"42","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Mathematical and Computer Modelling","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0895717713000320","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 42

Abstract

As city road congestion problems become more serious, many researchers have started to use the technique of vehicle ad hoc networks (VANETs) for road congestion detection. However, various on-board sensors equipped in vehicles may generate lots of atomic messages, which usually cause serious channel competition problems. In this paper, we propose a multilevel information fusion approach by combining the fuzzy clustering-based feature level information fusion (FCMA) and the modified Dempster–Shafer evidence reasoning-based decision level information fusion (D-SEMA). The FCMA can extract the key features from atomic messages, thereby greatly reducing the network traffic load. Furthermore, the D-SEMA mechanism is used to judge whether the road congestion event occurs. Performance analysis and simulation results under ONE simulator show that the proposed multilevel information fusion approach can detect road congestion efficiently with low bandwidth consumption.

基于多层次信息融合的道路拥堵检测方法
随着城市道路拥堵问题的日益严重,许多研究人员开始使用车辆自组织网络(VANETs)技术进行道路拥堵检测。然而,车辆上安装的各种车载传感器可能会产生大量的原子信息,这通常会造成严重的信道竞争问题。本文将基于模糊聚类的特征级信息融合(FCMA)与改进的基于Dempster-Shafer证据推理的决策级信息融合(D-SEMA)相结合,提出了一种多级信息融合方法。FCMA可以从原子消息中提取关键特征,从而大大减少网络流量负载。采用D-SEMA机制判断道路是否发生拥堵事件。性能分析和ONE模拟器下的仿真结果表明,所提出的多级信息融合方法可以在低带宽消耗的情况下高效检测道路拥堵。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Mathematical and Computer Modelling
Mathematical and Computer Modelling 数学-计算机:跨学科应用
自引率
0.00%
发文量
0
审稿时长
9.5 months
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信