Power system inertia in an inverter-dominated network

IF 0.6 4区 工程技术 Q4 ENERGY & FUELS
Mpeli J Rampokanyo, Pamela Ijumba-Kamera
{"title":"Power system inertia in an inverter-dominated network","authors":"Mpeli J Rampokanyo, Pamela Ijumba-Kamera","doi":"10.17159/2413-3051/2019/V30I2A6341","DOIUrl":null,"url":null,"abstract":"Erosion of power system inertial energy due to high penetration levels of renewable energy (RE) sources in a power system is a current teething issue with most system operators everywhere. The main issue is displacement of synchronous generators with inverter-based based generators, as the latter do not provide any inertial energy to the power system. The power system thereby becomes vulnerable to large system events (like sudden loss of a big generator or load) and in an inverter-based system this could result in catastrophes such as total collapse of the whole power system due to rapid rate of change of frequency. This paper focuses on power system inertia as RE penetration levels increase and also explores possible mitigation measures such as demand response techniques.","PeriodicalId":15666,"journal":{"name":"Journal of Energy in Southern Africa","volume":"1 1","pages":""},"PeriodicalIF":0.6000,"publicationDate":"2019-06-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Energy in Southern Africa","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.17159/2413-3051/2019/V30I2A6341","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"ENERGY & FUELS","Score":null,"Total":0}
引用次数: 4

Abstract

Erosion of power system inertial energy due to high penetration levels of renewable energy (RE) sources in a power system is a current teething issue with most system operators everywhere. The main issue is displacement of synchronous generators with inverter-based based generators, as the latter do not provide any inertial energy to the power system. The power system thereby becomes vulnerable to large system events (like sudden loss of a big generator or load) and in an inverter-based system this could result in catastrophes such as total collapse of the whole power system due to rapid rate of change of frequency. This paper focuses on power system inertia as RE penetration levels increase and also explores possible mitigation measures such as demand response techniques.
逆变器控制网络中的电力系统惯性
由于可再生能源(RE)在电力系统中的高渗透水平,电力系统惯性能量的侵蚀是目前大多数系统运营商面临的一个问题。主要问题是同步发电机与基于逆变器的发电机的位移,因为后者不向电力系统提供任何惯性能量。电力系统因此变得容易受到大型系统事件(如大型发电机或负载的突然损失)的影响,而在基于逆变器的系统中,这可能导致灾难,如由于频率的快速变化导致整个电力系统的完全崩溃。本文的重点是电力系统惯性随着可再生能源渗透水平的增加,也探讨了可能的缓解措施,如需求响应技术。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
3.00
自引率
0.00%
发文量
16
审稿时长
6 months
期刊介绍: The journal has a regional focus on southern Africa. Manuscripts that are accepted for consideration to publish in the journal must address energy issues in southern Africa or have a clear component relevant to southern Africa, including research that was set-up or designed in the region. The southern African region is considered to be constituted by the following fifteen (15) countries: Angola, Botswana, Democratic Republic of Congo, Lesotho, Malawi, Madagascar, Mauritius, Mozambique, Namibia, Seychelles, South Africa, Swaziland, Tanzania, Zambia and Zimbabwe. Within this broad field of energy research, topics of particular interest include energy efficiency, modelling, renewable energy, poverty, sustainable development, climate change mitigation, energy security, energy policy, energy governance, markets, technology and innovation.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信