Jonathan Brundan, J. Comes, David Nash, Andrew Reynolds
{"title":"A basis theorem for the affine oriented Brauer category and its cyclotomic quotients","authors":"Jonathan Brundan, J. Comes, David Nash, Andrew Reynolds","doi":"10.4171/QT/87","DOIUrl":null,"url":null,"abstract":"The affine oriented Brauer category is a monoidal category obtained from the oriented Brauer category (= the free symmetric monoidal category generated by a single object and its dual) by adjoining a polynomial generator subject to appropriate relations. In this article, we prove a basis theorem for the morphism spaces in this category, as well as for all of its cyclotomic quotients.","PeriodicalId":51331,"journal":{"name":"Quantum Topology","volume":"38 1","pages":"75-112"},"PeriodicalIF":1.0000,"publicationDate":"2014-04-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"43","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Quantum Topology","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.4171/QT/87","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 43
Abstract
The affine oriented Brauer category is a monoidal category obtained from the oriented Brauer category (= the free symmetric monoidal category generated by a single object and its dual) by adjoining a polynomial generator subject to appropriate relations. In this article, we prove a basis theorem for the morphism spaces in this category, as well as for all of its cyclotomic quotients.
期刊介绍:
Quantum Topology is a peer reviewed journal dedicated to publishing original research articles, short communications, and surveys in quantum topology and related areas of mathematics. Topics covered include in particular:
Low-dimensional Topology
Knot Theory
Jones Polynomial and Khovanov Homology
Topological Quantum Field Theory
Quantum Groups and Hopf Algebras
Mapping Class Groups and Teichmüller space
Categorification
Braid Groups and Braided Categories
Fusion Categories
Subfactors and Planar Algebras
Contact and Symplectic Topology
Topological Methods in Physics.