{"title":"Flexible mixture regression with the generalized hyperbolic distribution","authors":"Nam-Hwui Kim, Ryan P. Browne","doi":"10.1007/s11634-022-00532-4","DOIUrl":null,"url":null,"abstract":"<div><p>When modeling the functional relationship between a response variable and covariates via linear regression, multiple relationships may be present depending on the underlying component structure. Deploying a flexible mixture distribution can help with capturing a wide variety of such structures, thereby successfully modeling the response–covariate relationship while addressing the components. In that spirit, a mixture regression model based on the finite mixture of generalized hyperbolic distributions is introduced, and its parameter estimation method is presented. The flexibility of the generalized hyperbolic distribution can identify better-fitting components, which can lead to a more meaningful functional relationship between the response variable and the covariates. In addition, we introduce an iterative component combining procedure to aid the interpretability of the model. The results from simulated and real data analyses indicate that our method offers a distinctive edge over some of the existing methods, and that it can generate useful insights on the data set at hand for further investigation.</p></div>","PeriodicalId":49270,"journal":{"name":"Advances in Data Analysis and Classification","volume":"18 1","pages":"33 - 60"},"PeriodicalIF":1.4000,"publicationDate":"2023-01-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advances in Data Analysis and Classification","FirstCategoryId":"94","ListUrlMain":"https://link.springer.com/article/10.1007/s11634-022-00532-4","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"STATISTICS & PROBABILITY","Score":null,"Total":0}
引用次数: 0
Abstract
When modeling the functional relationship between a response variable and covariates via linear regression, multiple relationships may be present depending on the underlying component structure. Deploying a flexible mixture distribution can help with capturing a wide variety of such structures, thereby successfully modeling the response–covariate relationship while addressing the components. In that spirit, a mixture regression model based on the finite mixture of generalized hyperbolic distributions is introduced, and its parameter estimation method is presented. The flexibility of the generalized hyperbolic distribution can identify better-fitting components, which can lead to a more meaningful functional relationship between the response variable and the covariates. In addition, we introduce an iterative component combining procedure to aid the interpretability of the model. The results from simulated and real data analyses indicate that our method offers a distinctive edge over some of the existing methods, and that it can generate useful insights on the data set at hand for further investigation.
期刊介绍:
The international journal Advances in Data Analysis and Classification (ADAC) is designed as a forum for high standard publications on research and applications concerning the extraction of knowable aspects from many types of data. It publishes articles on such topics as structural, quantitative, or statistical approaches for the analysis of data; advances in classification, clustering, and pattern recognition methods; strategies for modeling complex data and mining large data sets; methods for the extraction of knowledge from data, and applications of advanced methods in specific domains of practice. Articles illustrate how new domain-specific knowledge can be made available from data by skillful use of data analysis methods. The journal also publishes survey papers that outline, and illuminate the basic ideas and techniques of special approaches.