{"title":"Radiolabeling Methods and Nuclear Imaging Techniques in the Design of New Polymeric Carriers for Cancer Therapy","authors":"R. D. Kruijff, A. Arranja, A. Denkova","doi":"10.2174/2452271602666180102150733","DOIUrl":null,"url":null,"abstract":"P3-10-04: A open-label, randomized, parallel, phase III trial to evaluate the efficacy and safety of Genexol ® -PM compared to Genexol ® (conventional paclitaxel with cremorphor EL) in recurrent or metastatic breast cancer patients. Cancer Research 2015; 75 (9 Supplement): P3-10-04-P3-10-04. Varela-Moreira A, Shi Y, Fens MH, Lammers T, Hennink WE, [17] Schiffelers RM. Clinical application of polymeric micelles for the Radiolabeling Methods and Nuclear Imaging Techniques Current Applied Polymer Science, 2018, Vol. 2, No. 1 15 treatment of cancer. Materials Chemistry Frontiers 2017; 1(8): 1485-501. Subbiah V, Combest A, Griley-Olsen J, Sharma N, Andrews E, [18] Bobe I, et al. Phase Ib/II trial of NC-6004 (nanoparticle cisplatin) plus gemcitabine (G) in pts with advanced solid tumors. Ann Oncol 2016; 27(suppl_6): 398P-P. Saeki T, Mukai H, Ro J, et al. 250PA Global phase III clinical [19] study comparing NK105 and paclitaxel in metastatic or recurrent breast cancer patients. Ann Oncol 2017; 28(suppl_5): mdx365.013-. Von Hoff DD, Mita MM, Ramanathan RK, et al. Phase I study of [20] PSMA-targeted docetaxel-containing nanoparticle BIND-014 in patients with advanced solid tumors. Clin Cancer Res 2016; 22(13): 3157-63. Hu Q, Rijcken CJ, Bansal R, Hennink WE, Storm G, Prakash J. [21] Complete regression of breast tumour with a single dose of docetaxel-entrapped core-cross-linked polymeric micelles. Biomaterials 2015; 53: 370-8. Burris HA, Wang JS-Z, Johnson ML, Falchook GS, Jones SF, [22] Strickland DK, et al. A phase I, open-label, first-time-in-patient dose escalation and expansion study to assess the safety, tolerability, and pharmacokinetics of nanoparticle encapsulated Aurora B kinase inhibitor AZD2811 in patients with advanced solid tumours. J Clin Oncol 2017; 15_suppl: TPS2608-. Smits ML, Nijsen JF, van den Bosch MA, et al. Holmium-166 [23] radioembolization for the treatment of patients with liver metastases: Design of the phase I HEPAR trial. J Exp Clin Cancer Res 2010; 29(1): 70. Smits ML, Nijsen JF, van den Bosch MA, et al. Holmium-166 [24] radioembolisation in patients with unresectable, chemorefractory liver metastases (HEPAR trial): A phase 1, dose-escalation study. Lancet Oncol 2012; 13(10): 1025-34. Feasibility of Holmium-166 Micro Brachytherapy in Head and [25] Neck Tumors (HIT) 2016 [Available from: https: //clinicaltrials.gov/ct2/show/NCT02975739]. Holmium-166-radioembolization in NET After Lutetium-177[26] dotatate: An Efficacy Study (HEPAR_Plus) 2016 [Available from: https: //clinicaltrials.gov/ct2/show/NCT02067988]. Eppard E, Allmeroth M, Zentel R, Roesch F. Labeling of HPMA[27] based, functionalized polymer-systems using metallic radionuclides. J Nucl Med 2013; 54 (Suppl. 2): 501. Yuan J, Zhang H, Kaur H, Oupicky D, Peng F. Synthesis and [28] characterization of theranostic poly(HPMA)-c(RGDyK)DOTA-64Cu copolymer targeting tumor angiogenesis: Tumor localization visualized by positron emission tomography. Mol Imaging 2013; 12(3): 203-12. Herth MM, Barz M, Moderegger D, et al. Radioactive labeling of [29] defined HPMA-based polymeric structures using [18F]FETos for in vivo imaging by positron emission tomography. Biomacromolecules 2009; 10(7): 1697-703. Allmeroth M, Moderegger D, Biesalski B, et al. Modifying the [30] body distribution of HPMA-based copolymers by molecular weight and aggregate formation. Biomacromolecules 2011; 12(7): 2841-9. Herth MM, Barz M, Jahn M, Zentel R, Rösch F. 72/74As-labeling [31] of HPMA based polymers for long-term in vivo PET imaging. Bioorg Med Chem Lett 2010; 20(18): 5454-8. Arranja A, Ivashchenko O, Denkova AG, et al. SPECT/CT [32] imaging of pluronic nanocarriers with varying poly(ethylene oxide) block length and aggregation state. Mol Pharm 2016; 13(3): 1158-65. Patri AK, Kukowska-Latallo JF, Baker JR Jr. Targeted drug [33] delivery with dendrimers: Comparison of the release kinetics of covalently conjugated drug and non-covalent drug inclusion complex. Adv Drug Deliv Rev 2005; 57(15): 2203-14. Qiao Z, Shi X. Dendrimer-based molecular imaging contrast [34] agents. Prog Polym Sci 2015; 44: 1-27. Mintzer MA, Grinstaff MW. Biomedical applications of [35] dendrimers: A tutorial. Chem Soc Rev 2011; 40(1): 173-90. Liko F, Hindré F, Fernandez-Megia E. Dendrimers as innovative [36] radiopharmaceuticals in cancer radionanotherapy. Biomacromolecules 2016; 17(10): 3103-14. Longmire M, Choyke PL, Kobayashi H. Dendrimer-based [37] contrast agents for molecular imaging. Curr Top Med Chem 2008; 8(14): 1180-6. Kobayashi H, Kawamoto S, Jo SK, Bryant HL Jr, Brechbiel MW, [38] Star RA. Macromolecular MRI contrast agents with small dendrimers: Pharmacokinetic differences between sizes and cores. Bioconjug Chem 2003; 14(2): 388-94. Kobayashi H, Brechbiel MW. Nano-sized MRI contrast agents [39] with dendrimer cores. Adv Drug Deliv Rev 2005; 57(15): 2271-86. Kobayashi H, Wu C, Kim MK, Paik CH, Carrasquillo JA, [40] Brechbiel MW. Evaluation of the in vivo biodistribution of indium-111 and yttrium-88 labeled dendrimer-1B4M-DTPA and its conjugation with anti-Tac monoclonal antibody. Bioconjug Chem 1999; 10(1): 103-11. Uehara T, Ishii D, Uemura T, et al. gamma-Glutamyl PAMAM [41] dendrimer as versatile precursor for dendrimer-based targeting devices. Bioconjug Chem 2010; 21(1): 175-81. Zhao L, Zhu J, Cheng Y, et al. Chlorotoxin-conjugated [42] multifunctional dendrimers labeled with radionuclide 131I for single photon emission computed tomography imaging and radiotherapy of gliomas. ACS Appl Mater Interfaces 2015; 7(35): 19798-808. Zhu J, Zhao L, Cheng Y, et al. Radionuclide (131)I-labeled [43] multifunctional dendrimers for targeted SPECT imaging and radiotherapy of tumors. Nanoscale 2015; 7(43): 18169-78. Laznickova A, Biricova V, Laznicek M, Hermann P. [44] Mono(pyridine-N-oxide) DOTA analog and its G1/G4-PAMAM dendrimer conjugates labeled with 177Lu: Radiolabeling and biodistribution studies. Appl Radiat Isot 2014; 84: 70-7. Cui W, Zhang Y, Xu X, Shen YM. Synthesis and 188Re [45] radiolabelling of dendrimer polyamide amine (PAMAM) folic acid conjugate. Med Chem 2012; 8(4): 727-31. Khan MK, Minc LD, Nigavekar SS, et al. Fabrication of 198Au0 [46] radioactive composite nanodevices and their use for nanobrachytherapy. Nanomedicine (Lond) 2008; 4(1): 57-69. Wu C, Brechbiel MW, Kozak RW, Gansow OA. Metal-chelate[47] dendrimer-antibody constructs for use in radioimmunotherapy and imaging. Bioorg Med Chem Lett 1994; 4(3): 449-54. Mamede M, Saga T, Kobayashi H, et al. Radiolabeling of avidin [48] with very high specific activity for internal radiation therapy of intraperitoneally disseminated tumors. Clin Cancer Res 2003; 9(10 Pt 1): 3756-62. Biricová V, Lázničková A, Lázníček M, Polášek M, Hermann P. [49] Radiolabeling of PAMAM dendrimers conjugated to a pyridineN-oxide DOTA analog with 111 In: Optimization of reaction conditions and biodistribution. J Pharm Biomed Anal 2011; 56(3): 505-12. Almutairi A, Rossin R, Shokeen M, et al. Biodegradable dendritic [50] positron-emitting nanoprobes for the noninvasive imaging of angiogenesis. Proc Natl Acad Sci USA 2009; 106(3): 685-90. Zhang Y, Sun Y, Xu X, et al. Radiosynthesis and micro-SPECT [51] imaging of 99mTc-dendrimer poly(amido)-amine folic acid conjugate. Bioorg Med Chem Lett 2010; 20(3): 927-31. Zhang Y, Sun Y, Xu X, et al. Synthesis, biodistribution, and [52] microsingle photon emission computed tomography (SPECT) 16 Current Applied Polymer Science, 2018, Vol. 2, No. 1 de Kruijff et al. imaging study of technetium-99m labeled PEGylated dendrimer poly(amidoamine) (PAMAM)-folic acid conjugates. J Med Chem 2010; 53(8): 3262-72. Xu X, Zhang Y, Wang X, et al. Radiosynthesis, biodistribution [53] and micro-SPECT imaging study of dendrimer-avidin conjugate. Bioorg Med Chem 2011; 19(5): 1643-8. Parrott MC, Benhabbour SR, Saab C, et al. Synthesis, [54] radiolabeling, and bio-imaging of high-generation polyester dendrimers. J Am Chem Soc 2009; 131(8): 2906-16. Hamaguchi T, Kato K, Yasui H, et al. A phase I and [55] pharmacokinetic study of NK105, a paclitaxel-incorporating micellar nanoparticle formulation. Br J Cancer 2007; 97(2): 170-6. Danson S, Ferry D, Alakhov V, et al. Phase I dose escalation and [56] pharmacokinetic study of pluronic polymer-bound doxorubicin (SP1049C) in patients with advanced cancer. Br J Cancer 2004; 90(11): 2085-91. Batrakova EV, Li S, Li Y, Alakhov VY, Elmquist WF, Kabanov [57] AV. Distribution kinetics of a micelle-forming block copolymer Pluronic P85. J Control Release 2004; 100(3): 389-97. Cheng CC, Huang CF, Ho AS, et al. Novel targeted nuclear [58] imaging agent for gastric cancer diagnosis: glucose-regulated protein 78 binding peptide-guided 111In-labeled polymeric micelles. Int J Nanomedicine 2013; 8: 1385-91. Hoang B, Lee H, Reilly RM, Allen C. Noninvasive monitoring of [59] the fate of 111In-labeled block copolymer micelles by high resolution and high sensitivity microSPECT/CT imaging. Mol Pharm 2009; 6(2): 581-92. Allmeroth M, Moderegger D, Gündel D, et al. PEGylation of [60] HPMA-based block copolymers enhances tumor accumulation in vivo: A quantitative study using radiolabeling and positron emission tomography. J Control Release 2013; 172(1): 77-85. Li A, Luehmann HP, Sun G, et al. Synthesis and in vivo [61] pharmacokinetic evaluation of degradable shell cross-linked polymer nanoparticles with poly(carboxybetaine) versus poly(ethylene glycol) surface-grafted coatings. ACS Nano 2012; 6(10): 8970-82. Sun X, Rossin R, Turner JL, et al. An assessment of the effects of [62] shell cross-linked nanoparticle size, core composition, and surface PEGylation on in vivo biodistribution. Biomacromolecules 2005; 6(5): 2541-54. Bhargava P, Zheng JX, Li P, Quirk RP, Harris FW, Cheng SZ. [63] Self-assembled polystyrene-block-poly(ethylene oxide) micelle morphologies in solution. Macromolecules 2006; 39(14): 4880-8. Laan AC, Santini C, Jennings L, de Jong M, Bernsen MR, [64] Denkova AG. Radiolabeling polymeric micelles for in viv","PeriodicalId":10768,"journal":{"name":"Current Applied Polymer Science","volume":"17 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2018-05-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Current Applied Polymer Science","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2174/2452271602666180102150733","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 5
Abstract
P3-10-04: A open-label, randomized, parallel, phase III trial to evaluate the efficacy and safety of Genexol ® -PM compared to Genexol ® (conventional paclitaxel with cremorphor EL) in recurrent or metastatic breast cancer patients. Cancer Research 2015; 75 (9 Supplement): P3-10-04-P3-10-04. Varela-Moreira A, Shi Y, Fens MH, Lammers T, Hennink WE, [17] Schiffelers RM. Clinical application of polymeric micelles for the Radiolabeling Methods and Nuclear Imaging Techniques Current Applied Polymer Science, 2018, Vol. 2, No. 1 15 treatment of cancer. Materials Chemistry Frontiers 2017; 1(8): 1485-501. Subbiah V, Combest A, Griley-Olsen J, Sharma N, Andrews E, [18] Bobe I, et al. Phase Ib/II trial of NC-6004 (nanoparticle cisplatin) plus gemcitabine (G) in pts with advanced solid tumors. Ann Oncol 2016; 27(suppl_6): 398P-P. Saeki T, Mukai H, Ro J, et al. 250PA Global phase III clinical [19] study comparing NK105 and paclitaxel in metastatic or recurrent breast cancer patients. Ann Oncol 2017; 28(suppl_5): mdx365.013-. Von Hoff DD, Mita MM, Ramanathan RK, et al. Phase I study of [20] PSMA-targeted docetaxel-containing nanoparticle BIND-014 in patients with advanced solid tumors. Clin Cancer Res 2016; 22(13): 3157-63. Hu Q, Rijcken CJ, Bansal R, Hennink WE, Storm G, Prakash J. [21] Complete regression of breast tumour with a single dose of docetaxel-entrapped core-cross-linked polymeric micelles. Biomaterials 2015; 53: 370-8. Burris HA, Wang JS-Z, Johnson ML, Falchook GS, Jones SF, [22] Strickland DK, et al. A phase I, open-label, first-time-in-patient dose escalation and expansion study to assess the safety, tolerability, and pharmacokinetics of nanoparticle encapsulated Aurora B kinase inhibitor AZD2811 in patients with advanced solid tumours. J Clin Oncol 2017; 15_suppl: TPS2608-. Smits ML, Nijsen JF, van den Bosch MA, et al. Holmium-166 [23] radioembolization for the treatment of patients with liver metastases: Design of the phase I HEPAR trial. J Exp Clin Cancer Res 2010; 29(1): 70. Smits ML, Nijsen JF, van den Bosch MA, et al. Holmium-166 [24] radioembolisation in patients with unresectable, chemorefractory liver metastases (HEPAR trial): A phase 1, dose-escalation study. Lancet Oncol 2012; 13(10): 1025-34. Feasibility of Holmium-166 Micro Brachytherapy in Head and [25] Neck Tumors (HIT) 2016 [Available from: https: //clinicaltrials.gov/ct2/show/NCT02975739]. Holmium-166-radioembolization in NET After Lutetium-177[26] dotatate: An Efficacy Study (HEPAR_Plus) 2016 [Available from: https: //clinicaltrials.gov/ct2/show/NCT02067988]. Eppard E, Allmeroth M, Zentel R, Roesch F. Labeling of HPMA[27] based, functionalized polymer-systems using metallic radionuclides. J Nucl Med 2013; 54 (Suppl. 2): 501. Yuan J, Zhang H, Kaur H, Oupicky D, Peng F. Synthesis and [28] characterization of theranostic poly(HPMA)-c(RGDyK)DOTA-64Cu copolymer targeting tumor angiogenesis: Tumor localization visualized by positron emission tomography. Mol Imaging 2013; 12(3): 203-12. Herth MM, Barz M, Moderegger D, et al. Radioactive labeling of [29] defined HPMA-based polymeric structures using [18F]FETos for in vivo imaging by positron emission tomography. Biomacromolecules 2009; 10(7): 1697-703. Allmeroth M, Moderegger D, Biesalski B, et al. Modifying the [30] body distribution of HPMA-based copolymers by molecular weight and aggregate formation. Biomacromolecules 2011; 12(7): 2841-9. Herth MM, Barz M, Jahn M, Zentel R, Rösch F. 72/74As-labeling [31] of HPMA based polymers for long-term in vivo PET imaging. Bioorg Med Chem Lett 2010; 20(18): 5454-8. Arranja A, Ivashchenko O, Denkova AG, et al. SPECT/CT [32] imaging of pluronic nanocarriers with varying poly(ethylene oxide) block length and aggregation state. Mol Pharm 2016; 13(3): 1158-65. Patri AK, Kukowska-Latallo JF, Baker JR Jr. Targeted drug [33] delivery with dendrimers: Comparison of the release kinetics of covalently conjugated drug and non-covalent drug inclusion complex. Adv Drug Deliv Rev 2005; 57(15): 2203-14. Qiao Z, Shi X. Dendrimer-based molecular imaging contrast [34] agents. Prog Polym Sci 2015; 44: 1-27. Mintzer MA, Grinstaff MW. Biomedical applications of [35] dendrimers: A tutorial. Chem Soc Rev 2011; 40(1): 173-90. Liko F, Hindré F, Fernandez-Megia E. Dendrimers as innovative [36] radiopharmaceuticals in cancer radionanotherapy. Biomacromolecules 2016; 17(10): 3103-14. Longmire M, Choyke PL, Kobayashi H. Dendrimer-based [37] contrast agents for molecular imaging. Curr Top Med Chem 2008; 8(14): 1180-6. Kobayashi H, Kawamoto S, Jo SK, Bryant HL Jr, Brechbiel MW, [38] Star RA. Macromolecular MRI contrast agents with small dendrimers: Pharmacokinetic differences between sizes and cores. Bioconjug Chem 2003; 14(2): 388-94. Kobayashi H, Brechbiel MW. Nano-sized MRI contrast agents [39] with dendrimer cores. Adv Drug Deliv Rev 2005; 57(15): 2271-86. Kobayashi H, Wu C, Kim MK, Paik CH, Carrasquillo JA, [40] Brechbiel MW. Evaluation of the in vivo biodistribution of indium-111 and yttrium-88 labeled dendrimer-1B4M-DTPA and its conjugation with anti-Tac monoclonal antibody. Bioconjug Chem 1999; 10(1): 103-11. Uehara T, Ishii D, Uemura T, et al. gamma-Glutamyl PAMAM [41] dendrimer as versatile precursor for dendrimer-based targeting devices. Bioconjug Chem 2010; 21(1): 175-81. Zhao L, Zhu J, Cheng Y, et al. Chlorotoxin-conjugated [42] multifunctional dendrimers labeled with radionuclide 131I for single photon emission computed tomography imaging and radiotherapy of gliomas. ACS Appl Mater Interfaces 2015; 7(35): 19798-808. Zhu J, Zhao L, Cheng Y, et al. Radionuclide (131)I-labeled [43] multifunctional dendrimers for targeted SPECT imaging and radiotherapy of tumors. Nanoscale 2015; 7(43): 18169-78. Laznickova A, Biricova V, Laznicek M, Hermann P. [44] Mono(pyridine-N-oxide) DOTA analog and its G1/G4-PAMAM dendrimer conjugates labeled with 177Lu: Radiolabeling and biodistribution studies. Appl Radiat Isot 2014; 84: 70-7. Cui W, Zhang Y, Xu X, Shen YM. Synthesis and 188Re [45] radiolabelling of dendrimer polyamide amine (PAMAM) folic acid conjugate. Med Chem 2012; 8(4): 727-31. Khan MK, Minc LD, Nigavekar SS, et al. Fabrication of 198Au0 [46] radioactive composite nanodevices and their use for nanobrachytherapy. Nanomedicine (Lond) 2008; 4(1): 57-69. Wu C, Brechbiel MW, Kozak RW, Gansow OA. Metal-chelate[47] dendrimer-antibody constructs for use in radioimmunotherapy and imaging. Bioorg Med Chem Lett 1994; 4(3): 449-54. Mamede M, Saga T, Kobayashi H, et al. Radiolabeling of avidin [48] with very high specific activity for internal radiation therapy of intraperitoneally disseminated tumors. Clin Cancer Res 2003; 9(10 Pt 1): 3756-62. Biricová V, Lázničková A, Lázníček M, Polášek M, Hermann P. [49] Radiolabeling of PAMAM dendrimers conjugated to a pyridineN-oxide DOTA analog with 111 In: Optimization of reaction conditions and biodistribution. J Pharm Biomed Anal 2011; 56(3): 505-12. Almutairi A, Rossin R, Shokeen M, et al. Biodegradable dendritic [50] positron-emitting nanoprobes for the noninvasive imaging of angiogenesis. Proc Natl Acad Sci USA 2009; 106(3): 685-90. Zhang Y, Sun Y, Xu X, et al. Radiosynthesis and micro-SPECT [51] imaging of 99mTc-dendrimer poly(amido)-amine folic acid conjugate. Bioorg Med Chem Lett 2010; 20(3): 927-31. Zhang Y, Sun Y, Xu X, et al. Synthesis, biodistribution, and [52] microsingle photon emission computed tomography (SPECT) 16 Current Applied Polymer Science, 2018, Vol. 2, No. 1 de Kruijff et al. imaging study of technetium-99m labeled PEGylated dendrimer poly(amidoamine) (PAMAM)-folic acid conjugates. J Med Chem 2010; 53(8): 3262-72. Xu X, Zhang Y, Wang X, et al. Radiosynthesis, biodistribution [53] and micro-SPECT imaging study of dendrimer-avidin conjugate. Bioorg Med Chem 2011; 19(5): 1643-8. Parrott MC, Benhabbour SR, Saab C, et al. Synthesis, [54] radiolabeling, and bio-imaging of high-generation polyester dendrimers. J Am Chem Soc 2009; 131(8): 2906-16. Hamaguchi T, Kato K, Yasui H, et al. A phase I and [55] pharmacokinetic study of NK105, a paclitaxel-incorporating micellar nanoparticle formulation. Br J Cancer 2007; 97(2): 170-6. Danson S, Ferry D, Alakhov V, et al. Phase I dose escalation and [56] pharmacokinetic study of pluronic polymer-bound doxorubicin (SP1049C) in patients with advanced cancer. Br J Cancer 2004; 90(11): 2085-91. Batrakova EV, Li S, Li Y, Alakhov VY, Elmquist WF, Kabanov [57] AV. Distribution kinetics of a micelle-forming block copolymer Pluronic P85. J Control Release 2004; 100(3): 389-97. Cheng CC, Huang CF, Ho AS, et al. Novel targeted nuclear [58] imaging agent for gastric cancer diagnosis: glucose-regulated protein 78 binding peptide-guided 111In-labeled polymeric micelles. Int J Nanomedicine 2013; 8: 1385-91. Hoang B, Lee H, Reilly RM, Allen C. Noninvasive monitoring of [59] the fate of 111In-labeled block copolymer micelles by high resolution and high sensitivity microSPECT/CT imaging. Mol Pharm 2009; 6(2): 581-92. Allmeroth M, Moderegger D, Gündel D, et al. PEGylation of [60] HPMA-based block copolymers enhances tumor accumulation in vivo: A quantitative study using radiolabeling and positron emission tomography. J Control Release 2013; 172(1): 77-85. Li A, Luehmann HP, Sun G, et al. Synthesis and in vivo [61] pharmacokinetic evaluation of degradable shell cross-linked polymer nanoparticles with poly(carboxybetaine) versus poly(ethylene glycol) surface-grafted coatings. ACS Nano 2012; 6(10): 8970-82. Sun X, Rossin R, Turner JL, et al. An assessment of the effects of [62] shell cross-linked nanoparticle size, core composition, and surface PEGylation on in vivo biodistribution. Biomacromolecules 2005; 6(5): 2541-54. Bhargava P, Zheng JX, Li P, Quirk RP, Harris FW, Cheng SZ. [63] Self-assembled polystyrene-block-poly(ethylene oxide) micelle morphologies in solution. Macromolecules 2006; 39(14): 4880-8. Laan AC, Santini C, Jennings L, de Jong M, Bernsen MR, [64] Denkova AG. Radiolabeling polymeric micelles for in viv