Semantic Segmentation of Atherosclerosis in Superficial Layer of IVOCT Images Using Deep Learning

X. Ren, Haiyuan Wu, Toshiyuki Imai, Yuxia Zhao, T. Kubo
{"title":"Semantic Segmentation of Atherosclerosis in Superficial Layer of IVOCT Images Using Deep Learning","authors":"X. Ren, Haiyuan Wu, Toshiyuki Imai, Yuxia Zhao, T. Kubo","doi":"10.1145/3498851.3498953","DOIUrl":null,"url":null,"abstract":"Labeling the lesion tissue pixel-by-pixel is a serious process for cardiovascular disease (CAD) doctors, which causes time-consuming and low effectiveness. We proposed an automatic method with deep learning technology to classify the vessel tissue on the intravascular optical coherence tomography (IVOCT) image with a pixel level. Considering that only the superficial layer contains valuable information about the tissue, we firstly segmented the region of interest (ROI) by using the level set method and cropped square patches from it as the input data of neural network for the purpose of utilizing the analyzable area and increasing the data volume to improve the generalization of the network model. We chose SegNet to implement the learning procedure and predicted the classification of each pixel of cropped patches. Finally, constructing a 3-D volume to place each prediction on each slice and finding out the maximum type number of every pixel as the final class of lesion tissue. The classification results show that Our method presents a considerable approach as a computer-assisted tool for doctors.","PeriodicalId":89230,"journal":{"name":"Proceedings. IEEE/WIC/ACM International Conference on Web Intelligence and Intelligent Agent Technology","volume":"56 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2021-12-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings. IEEE/WIC/ACM International Conference on Web Intelligence and Intelligent Agent Technology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3498851.3498953","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

Labeling the lesion tissue pixel-by-pixel is a serious process for cardiovascular disease (CAD) doctors, which causes time-consuming and low effectiveness. We proposed an automatic method with deep learning technology to classify the vessel tissue on the intravascular optical coherence tomography (IVOCT) image with a pixel level. Considering that only the superficial layer contains valuable information about the tissue, we firstly segmented the region of interest (ROI) by using the level set method and cropped square patches from it as the input data of neural network for the purpose of utilizing the analyzable area and increasing the data volume to improve the generalization of the network model. We chose SegNet to implement the learning procedure and predicted the classification of each pixel of cropped patches. Finally, constructing a 3-D volume to place each prediction on each slice and finding out the maximum type number of every pixel as the final class of lesion tissue. The classification results show that Our method presents a considerable approach as a computer-assisted tool for doctors.
基于深度学习的IVOCT图像浅层动脉粥样硬化语义分割
对于心血管疾病(CAD)医生来说,逐像素标记病变组织是一个非常严重的过程,耗时且效率低。提出了一种基于深度学习技术的血管内光学相干断层扫描(IVOCT)图像血管组织自动分类方法。考虑到只有浅层包含有价值的组织信息,我们首先使用水平集方法对感兴趣区域(ROI)进行分割,并从中裁剪方形斑块作为神经网络的输入数据,以利用可分析的面积,增加数据量,提高网络模型的泛化能力。我们选择SegNet来实现学习过程,并预测裁剪补丁的每个像素的分类。最后,构建一个三维体,将每个预测放置在每个切片上,并找出每个像素的最大类型数作为病变组织的最终类别。分类结果表明,我们的方法为医生提供了一个相当好的计算机辅助工具。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信