Fuzzy Feature Similarity Functions for Feature Clustering and Dimensionality Reduction

IF 2.2 Q3 COMPUTER SCIENCE, INFORMATION SYSTEMS
Data Pub Date : 2021-04-05 DOI:10.1145/3460620.3460758
Arun Nagaraja, U. Boregowda, V. Radhakrishna
{"title":"Fuzzy Feature Similarity Functions for Feature Clustering and Dimensionality Reduction","authors":"Arun Nagaraja, U. Boregowda, V. Radhakrishna","doi":"10.1145/3460620.3460758","DOIUrl":null,"url":null,"abstract":"Dimensionality reduction is usually obtained by applying some of the most well unknown methods such as principal component analysis, singular value decomposition, feature selection algorithms which are based on information gain, Gini index etc. The objective behind achievement of dimensionality reduction is reducing computational complexity and at the same time aiming to attain better performance by learning algorithms which may perform supervised or unsupervised learning. In this paper, we present a feature clustering similarity function for dimensionality reduction so that the eventual reduced dataset may be used to reduce the computational complexity and also result better classifier evaluation results interms of accuracy, precision etc.","PeriodicalId":36824,"journal":{"name":"Data","volume":"1 1","pages":""},"PeriodicalIF":2.2000,"publicationDate":"2021-04-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Data","FirstCategoryId":"90","ListUrlMain":"https://doi.org/10.1145/3460620.3460758","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"COMPUTER SCIENCE, INFORMATION SYSTEMS","Score":null,"Total":0}
引用次数: 3

Abstract

Dimensionality reduction is usually obtained by applying some of the most well unknown methods such as principal component analysis, singular value decomposition, feature selection algorithms which are based on information gain, Gini index etc. The objective behind achievement of dimensionality reduction is reducing computational complexity and at the same time aiming to attain better performance by learning algorithms which may perform supervised or unsupervised learning. In this paper, we present a feature clustering similarity function for dimensionality reduction so that the eventual reduced dataset may be used to reduce the computational complexity and also result better classifier evaluation results interms of accuracy, precision etc.
用于特征聚类和降维的模糊特征相似函数
降维通常通过应用一些最不为人知的方法来实现,如主成分分析、奇异值分解、基于信息增益的特征选择算法、基尼指数等。实现降维的目的是降低计算复杂度,同时通过学习算法来获得更好的性能,这些算法可以执行监督学习或无监督学习。在本文中,我们提出了一个特征聚类相似函数用于降维,以便最终的降维数据集可以用于降低计算复杂度,并得到更好的分类器评估结果,包括准确性,精密度等。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Data
Data Decision Sciences-Information Systems and Management
CiteScore
4.30
自引率
3.80%
发文量
0
审稿时长
10 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信