Static power model for CMOS and FPGA circuits

IF 1.1 4区 计算机科学 Q4 COMPUTER SCIENCE, HARDWARE & ARCHITECTURE
Anas Razzaq, Andy Ye
{"title":"Static power model for CMOS and FPGA circuits","authors":"Anas Razzaq,&nbsp;Andy Ye","doi":"10.1049/cdt2.12021","DOIUrl":null,"url":null,"abstract":"<p>In Ultra-Low-Power (ULP) applications, power consumption is a key parameter for process independent architectural level design decisions. Traditionally, time-consuming Spice simulations are used to measure the static power consumption. Herein, a technology-independent static power estimation model is presented, which can estimate static power with reasonable accuracy in much less time. It is shown that active area only is not a good indicator for static power consumption, hence in this model, the effects of transistor sizing, transistor stacking, gate boosting and voltage change are considered. The procedure to apply this model to processors and FPGAs is demonstrated. Across different process technologies, compared to traditional spice simulation, this model can estimate the static power consumption of processor with an error of 1%–4%, while static power consumption of an FPGA system with an error of 1%–15%.</p>","PeriodicalId":50383,"journal":{"name":"IET Computers and Digital Techniques","volume":null,"pages":null},"PeriodicalIF":1.1000,"publicationDate":"2021-03-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ietresearch.onlinelibrary.wiley.com/doi/epdf/10.1049/cdt2.12021","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IET Computers and Digital Techniques","FirstCategoryId":"94","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1049/cdt2.12021","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"COMPUTER SCIENCE, HARDWARE & ARCHITECTURE","Score":null,"Total":0}
引用次数: 1

Abstract

In Ultra-Low-Power (ULP) applications, power consumption is a key parameter for process independent architectural level design decisions. Traditionally, time-consuming Spice simulations are used to measure the static power consumption. Herein, a technology-independent static power estimation model is presented, which can estimate static power with reasonable accuracy in much less time. It is shown that active area only is not a good indicator for static power consumption, hence in this model, the effects of transistor sizing, transistor stacking, gate boosting and voltage change are considered. The procedure to apply this model to processors and FPGAs is demonstrated. Across different process technologies, compared to traditional spice simulation, this model can estimate the static power consumption of processor with an error of 1%–4%, while static power consumption of an FPGA system with an error of 1%–15%.

Abstract Image

CMOS和FPGA电路的静态功率模型
在超低功耗(ULP)应用中,功耗是与工艺无关的架构级设计决策的关键参数。传统上,耗时的Spice模拟用于测量静态功耗。在此基础上,提出了一种与技术无关的静态功率估算模型,该模型可以在较短的时间内以合理的精度估算静态功率。结果表明,仅有源面积并不能很好地反映静态功耗,因此在该模型中考虑了晶体管尺寸、晶体管堆叠、栅极升压和电压变化的影响。演示了将该模型应用于处理器和fpga的过程。在不同的工艺技术中,与传统的spice仿真相比,该模型可以估计处理器的静态功耗,误差为1%-4%,而FPGA系统的静态功耗误差为1%-15%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
IET Computers and Digital Techniques
IET Computers and Digital Techniques 工程技术-计算机:理论方法
CiteScore
3.50
自引率
0.00%
发文量
12
审稿时长
>12 weeks
期刊介绍: IET Computers & Digital Techniques publishes technical papers describing recent research and development work in all aspects of digital system-on-chip design and test of electronic and embedded systems, including the development of design automation tools (methodologies, algorithms and architectures). Papers based on the problems associated with the scaling down of CMOS technology are particularly welcome. It is aimed at researchers, engineers and educators in the fields of computer and digital systems design and test. The key subject areas of interest are: Design Methods and Tools: CAD/EDA tools, hardware description languages, high-level and architectural synthesis, hardware/software co-design, platform-based design, 3D stacking and circuit design, system on-chip architectures and IP cores, embedded systems, logic synthesis, low-power design and power optimisation. Simulation, Test and Validation: electrical and timing simulation, simulation based verification, hardware/software co-simulation and validation, mixed-domain technology modelling and simulation, post-silicon validation, power analysis and estimation, interconnect modelling and signal integrity analysis, hardware trust and security, design-for-testability, embedded core testing, system-on-chip testing, on-line testing, automatic test generation and delay testing, low-power testing, reliability, fault modelling and fault tolerance. Processor and System Architectures: many-core systems, general-purpose and application specific processors, computational arithmetic for DSP applications, arithmetic and logic units, cache memories, memory management, co-processors and accelerators, systems and networks on chip, embedded cores, platforms, multiprocessors, distributed systems, communication protocols and low-power issues. Configurable Computing: embedded cores, FPGAs, rapid prototyping, adaptive computing, evolvable and statically and dynamically reconfigurable and reprogrammable systems, reconfigurable hardware. Design for variability, power and aging: design methods for variability, power and aging aware design, memories, FPGAs, IP components, 3D stacking, energy harvesting. Case Studies: emerging applications, applications in industrial designs, and design frameworks.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信