GeoNet: Geometric Neural Network for Joint Depth and Surface Normal Estimation

Xiaojuan Qi, Renjie Liao, Zhengzhe Liu, R. Urtasun, Jiaya Jia
{"title":"GeoNet: Geometric Neural Network for Joint Depth and Surface Normal Estimation","authors":"Xiaojuan Qi, Renjie Liao, Zhengzhe Liu, R. Urtasun, Jiaya Jia","doi":"10.1109/CVPR.2018.00037","DOIUrl":null,"url":null,"abstract":"In this paper, we propose Geometric Neural Network (GeoNet) to jointly predict depth and surface normal maps from a single image. Building on top of two-stream CNNs, our GeoNet incorporates geometric relation between depth and surface normal via the new depth-to-normal and normal-to-depth networks. Depth-to-normal network exploits the least square solution of surface normal from depth and improves its quality with a residual module. Normal-to-depth network, contrarily, refines the depth map based on the constraints from the surface normal through a kernel regression module, which has no parameter to learn. These two networks enforce the underlying model to efficiently predict depth and surface normal for high consistency and corresponding accuracy. Our experiments on NYU v2 dataset verify that our GeoNet is able to predict geometrically consistent depth and normal maps. It achieves top performance on surface normal estimation and is on par with state-of-the-art depth estimation methods.","PeriodicalId":6564,"journal":{"name":"2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition","volume":"42 1","pages":"283-291"},"PeriodicalIF":0.0000,"publicationDate":"2018-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"291","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CVPR.2018.00037","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 291

Abstract

In this paper, we propose Geometric Neural Network (GeoNet) to jointly predict depth and surface normal maps from a single image. Building on top of two-stream CNNs, our GeoNet incorporates geometric relation between depth and surface normal via the new depth-to-normal and normal-to-depth networks. Depth-to-normal network exploits the least square solution of surface normal from depth and improves its quality with a residual module. Normal-to-depth network, contrarily, refines the depth map based on the constraints from the surface normal through a kernel regression module, which has no parameter to learn. These two networks enforce the underlying model to efficiently predict depth and surface normal for high consistency and corresponding accuracy. Our experiments on NYU v2 dataset verify that our GeoNet is able to predict geometrically consistent depth and normal maps. It achieves top performance on surface normal estimation and is on par with state-of-the-art depth estimation methods.
基于几何神经网络的节理深度和表面法向估计
在本文中,我们提出了几何神经网络(GeoNet)来联合预测深度和表面法线映射从单个图像。在两流cnn的基础上,我们的GeoNet通过新的深度-法线和法线-深度网络结合了深度和表面法线之间的几何关系。深度到法线网络利用表面法线的最小二乘解,并通过残差模块提高其质量。与之相反,normal -to-depth网络通过核回归模块根据表面法线的约束来细化深度图,核回归模块不需要学习参数。这两种网络使底层模型有效地预测深度和地表法线,具有较高的一致性和相应的精度。我们在NYU v2数据集上的实验验证了我们的GeoNet能够预测几何上一致的深度和法线图。它在表面法向估计方面达到了最高的性能,并且与最先进的深度估计方法相当。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信