Angle Trisection, Bhaskara’s Proof, and Pythagorean Theorem

Q4 Multidisciplinary
Emiliano De Catalina
{"title":"Angle Trisection, Bhaskara’s Proof, and Pythagorean Theorem","authors":"Emiliano De Catalina","doi":"10.32871/RMRJ2109.01.01","DOIUrl":null,"url":null,"abstract":"This paper deals with 1) angle trisection, 2) Bhaskara’s first proof, and 3) Pythagorean theorem. The purpose of this paper is threefold. First, to show a new, direct method of trisecting the 900 angle using unmarked straight edge and compass; secondly, to show Bhaskara’s first proof of the Pythagorean theorem (c2 = a2 + b2) as embedded in this new, direct trisection of the 900 angle; lastly, to show the derivation of the Pythagorean theorem from this trisection of the 900 angle. This paper employs the direct dissection method. It concludes by presenting four points: a) the concept of trisectability as distinct from concept of constructability; b) the trisection of the 900 angle as really a new, different method; c) Bhaskara’s first proof of the Pythagorean theorem as truly embedded in this trisection of the 900 angle and; d) another way of deriving Pythagorean theorem from this trisection of the 900 angle.","PeriodicalId":34442,"journal":{"name":"Recoletos Multidisciplinary Research Journal","volume":"13 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2021-05-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Recoletos Multidisciplinary Research Journal","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.32871/RMRJ2109.01.01","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"Multidisciplinary","Score":null,"Total":0}
引用次数: 1

Abstract

This paper deals with 1) angle trisection, 2) Bhaskara’s first proof, and 3) Pythagorean theorem. The purpose of this paper is threefold. First, to show a new, direct method of trisecting the 900 angle using unmarked straight edge and compass; secondly, to show Bhaskara’s first proof of the Pythagorean theorem (c2 = a2 + b2) as embedded in this new, direct trisection of the 900 angle; lastly, to show the derivation of the Pythagorean theorem from this trisection of the 900 angle. This paper employs the direct dissection method. It concludes by presenting four points: a) the concept of trisectability as distinct from concept of constructability; b) the trisection of the 900 angle as really a new, different method; c) Bhaskara’s first proof of the Pythagorean theorem as truly embedded in this trisection of the 900 angle and; d) another way of deriving Pythagorean theorem from this trisection of the 900 angle.
角三分法,巴斯卡拉证明,勾股定理
本文讨论了1)角三切分,2)Bhaskara第一次证明,3)勾股定理。本文的目的有三个。首先,提出了一种利用无标直边和罗经直接分900角的新方法;第二,证明巴舍罗对毕达哥拉斯定理(c2 = a2 + b2)的第一个证明,包含在900角的新的直接三切线中;最后,从900角的三切线推导出毕达哥拉斯定理。本文采用直接解剖法。最后提出了四点:a)三可分性概念与可构造性概念的区别;B) 900角的三切分是一种全新的、不同的方法;c) Bhaskara对毕达哥拉斯定理的第一个证明,它真正嵌入了900角的三切分和;d)另一种从900角的三切线推导勾股定理的方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
0.70
自引率
0.00%
发文量
19
审稿时长
8 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信