Peng Rao , Tian-Jiao Wang , Jing Li , Pei-Lin Deng , Yi-Jun Shen , Yu Chen , Xin-Long Tian
{"title":"Plasma induced Fe-NX active sites to improve the oxygen reduction reaction performance","authors":"Peng Rao , Tian-Jiao Wang , Jing Li , Pei-Lin Deng , Yi-Jun Shen , Yu Chen , Xin-Long Tian","doi":"10.1016/j.asems.2022.100005","DOIUrl":null,"url":null,"abstract":"<div><p>Rational design of high-efficient and low-cost catalysts as alternatives to Pt-based catalysts toward the oxygen reduction reaction (ORR) is extremely desirable but challenging. In this work, Fe@NCNT is firstly synthesized via the one-pot pyrolysis method, then Fe-N<sub><em>X</em></sub> active species are <em>in-situ</em> created on the prepared Fe@NCNT by a feasible “plasma inducing” strategy to synthesize the resulting catalyst (Fe@NCNT-P) for ORR. The morphology of Fe@NCNT-P is perfectly inherited by the derived carbon precursor, resulting in the core-shell structure of carbon-coated Fe and a mesoporous dominant nanostructure with a high specific surface area of 536 m<sup>2</sup> g<sup>−1</sup>. The resultant Fe@NCNT-P catalyst exhibits remarkable ORR activity and durability, as well as outstanding performance in assembled zinc-air battery (ZAB) test with a peak power density of 240 mW cm<sup>−2</sup>. This work not only reports a novel and robust ORR catalyst, but also proposes a simple and effective strategy to improve the ORR electrocatalytic performance.</p></div>","PeriodicalId":100036,"journal":{"name":"Advanced Sensor and Energy Materials","volume":"1 1","pages":"Article 100005"},"PeriodicalIF":0.0000,"publicationDate":"2022-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2773045X2200005X/pdfft?md5=f54efd5266ecc524502600d42e344a4b&pid=1-s2.0-S2773045X2200005X-main.pdf","citationCount":"28","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advanced Sensor and Energy Materials","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2773045X2200005X","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 28
Abstract
Rational design of high-efficient and low-cost catalysts as alternatives to Pt-based catalysts toward the oxygen reduction reaction (ORR) is extremely desirable but challenging. In this work, Fe@NCNT is firstly synthesized via the one-pot pyrolysis method, then Fe-NX active species are in-situ created on the prepared Fe@NCNT by a feasible “plasma inducing” strategy to synthesize the resulting catalyst (Fe@NCNT-P) for ORR. The morphology of Fe@NCNT-P is perfectly inherited by the derived carbon precursor, resulting in the core-shell structure of carbon-coated Fe and a mesoporous dominant nanostructure with a high specific surface area of 536 m2 g−1. The resultant Fe@NCNT-P catalyst exhibits remarkable ORR activity and durability, as well as outstanding performance in assembled zinc-air battery (ZAB) test with a peak power density of 240 mW cm−2. This work not only reports a novel and robust ORR catalyst, but also proposes a simple and effective strategy to improve the ORR electrocatalytic performance.