Fault modeling and diagnosis for nanometric analog circuits

K. Huang, H. Stratigopoulos, S. Mir
{"title":"Fault modeling and diagnosis for nanometric analog circuits","authors":"K. Huang, H. Stratigopoulos, S. Mir","doi":"10.1109/TEST.2013.6651886","DOIUrl":null,"url":null,"abstract":"Fault diagnosis of Integrated Circuits (ICs) has grown into a special field of interest in the Semiconductor Industry. Fault diagnosis is very useful at the design stage for debugging purposes, at high-volume manufacturing for obtaining feedback about the underlying fault mechanisms and improving the design and layout in future IC generations, and in cases where the IC is part of a larger safety-critical system (e.g. automotive, aerospace) for identifying the root-cause of failure and for applying corrective actions that will prevent failure reoccurrence and, thereby, will expand the safety features. In this summary paper, we present a methodology for fault modeling and fault diagnosis of analog circuits based on machine learning. A defect filter is used to recognize the type of fault (parametric or catastrophic), inverse regression functions are used to locate and predict the values of parametric faults, and multi-class classifiers are used to list catastrophic faults according to their likelihood of occurrence. The methodology is demonstrated on both simulation and high-volume manufacturing data showing excellent overall diagnosis rate.","PeriodicalId":6379,"journal":{"name":"2013 IEEE International Test Conference (ITC)","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2013-11-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2013 IEEE International Test Conference (ITC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/TEST.2013.6651886","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

Abstract

Fault diagnosis of Integrated Circuits (ICs) has grown into a special field of interest in the Semiconductor Industry. Fault diagnosis is very useful at the design stage for debugging purposes, at high-volume manufacturing for obtaining feedback about the underlying fault mechanisms and improving the design and layout in future IC generations, and in cases where the IC is part of a larger safety-critical system (e.g. automotive, aerospace) for identifying the root-cause of failure and for applying corrective actions that will prevent failure reoccurrence and, thereby, will expand the safety features. In this summary paper, we present a methodology for fault modeling and fault diagnosis of analog circuits based on machine learning. A defect filter is used to recognize the type of fault (parametric or catastrophic), inverse regression functions are used to locate and predict the values of parametric faults, and multi-class classifiers are used to list catastrophic faults according to their likelihood of occurrence. The methodology is demonstrated on both simulation and high-volume manufacturing data showing excellent overall diagnosis rate.
纳米模拟电路的故障建模与诊断
集成电路(ic)的故障诊断已经发展成为半导体行业的一个特殊领域。故障诊断在设计阶段非常有用,用于调试目的,在大批量生产中获得有关潜在故障机制的反馈,并改进未来IC代的设计和布局,以及在IC是更大的安全关键系统(例如汽车,航空航天)的一部分的情况下,用于识别故障的根本原因并应用纠正措施,以防止故障再次发生,从而扩展安全功能。在本文中,我们提出了一种基于机器学习的模拟电路故障建模和故障诊断方法。缺陷过滤器用于识别故障类型(参数或灾难性),逆回归函数用于定位和预测参数故障的值,多类分类器用于根据故障发生的可能性列出灾难性故障。该方法在仿真和大批量生产数据上进行了验证,显示出良好的总体诊断率。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信