Yohei Otsuka, S. Tomura, T. Toyooka, S. Takeuchi, A. Tomiyama, Tomoko Omura, Daizoh Saito, K. Wada
{"title":"Hyperbaric hydrogen therapy improves secondary brain injury after head trauma","authors":"Yohei Otsuka, S. Tomura, T. Toyooka, S. Takeuchi, A. Tomiyama, Tomoko Omura, Daizoh Saito, K. Wada","doi":"10.22462/01.01.2023.43","DOIUrl":null,"url":null,"abstract":"Background: The pathophysiology of traumatic brain injury (TBI) is caused by the initial physical damage and by the subsequent biochemical damage (secondary brain injury). Oxidative stress is deeply involved in secondary brain injury, so molecular hydrogen therapy may be effective for TBI. Hydrogen gas shows the optimal effect at concentrations of 2% or higher, but can only be used up to 1.3% in the form of a gas cylinder mixed with oxygen gas, which may not be sufficiently effective. The partial pressure of hydrogen increases in proportion to the pressure, so hyperbaric hydrogen therapy (HBH2) is more effective than that at atmospheric pressure. Methods: A total of 120 mice were divided into three groups: TBI + non-treatment group (TBI group; n = 40), TBI + HBH2 group (n = 40), and non-TBI + non-treatment group (sham group; n = 40). The TBI and TBI + HBH2 groups were subjected to moderate cerebral contusion induced by controlled cortical impact. The TBI + HBH2 group received hyperbaric hydrogen therapy at 2 atmospheres for 90 minutes, at 30 minutes after TBI. Brain edema, neuronal cell loss in the injured hippocampus, neurological function, and cognitive function were evaluated. Results: The TBI + HBH2 group showed significantly less cerebral edema (p < 0.05). Residual hippocampal neurons were significantly more numerous in the TBI + HBH2 group on day 28 (p < 0.05). Neurological score and behavioral tests showed the TBI + HBH2 group had significantly reduced hyperactivity on day 14 (p < 0.01). Conclusion: Hyperbaric hydrogen therapy may be effective for posttraumatic secondary brain injury.","PeriodicalId":49396,"journal":{"name":"Undersea and Hyperbaric Medicine","volume":null,"pages":null},"PeriodicalIF":0.7000,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Undersea and Hyperbaric Medicine","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.22462/01.01.2023.43","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"MARINE & FRESHWATER BIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Background: The pathophysiology of traumatic brain injury (TBI) is caused by the initial physical damage and by the subsequent biochemical damage (secondary brain injury). Oxidative stress is deeply involved in secondary brain injury, so molecular hydrogen therapy may be effective for TBI. Hydrogen gas shows the optimal effect at concentrations of 2% or higher, but can only be used up to 1.3% in the form of a gas cylinder mixed with oxygen gas, which may not be sufficiently effective. The partial pressure of hydrogen increases in proportion to the pressure, so hyperbaric hydrogen therapy (HBH2) is more effective than that at atmospheric pressure. Methods: A total of 120 mice were divided into three groups: TBI + non-treatment group (TBI group; n = 40), TBI + HBH2 group (n = 40), and non-TBI + non-treatment group (sham group; n = 40). The TBI and TBI + HBH2 groups were subjected to moderate cerebral contusion induced by controlled cortical impact. The TBI + HBH2 group received hyperbaric hydrogen therapy at 2 atmospheres for 90 minutes, at 30 minutes after TBI. Brain edema, neuronal cell loss in the injured hippocampus, neurological function, and cognitive function were evaluated. Results: The TBI + HBH2 group showed significantly less cerebral edema (p < 0.05). Residual hippocampal neurons were significantly more numerous in the TBI + HBH2 group on day 28 (p < 0.05). Neurological score and behavioral tests showed the TBI + HBH2 group had significantly reduced hyperactivity on day 14 (p < 0.01). Conclusion: Hyperbaric hydrogen therapy may be effective for posttraumatic secondary brain injury.
期刊介绍:
Undersea and Hyperbaric Medicine Journal accepts manuscripts for publication that are related to the areas of diving
research and physiology, hyperbaric medicine and oxygen therapy, submarine medicine, naval medicine and clinical research
related to the above topics. To be considered for UHM scientific papers must deal with significant and new research in an
area related to biological, physical and clinical phenomena related to the above environments.