{"title":"A categorification of cyclotomic rings","authors":"Robert Laugwitz, You Qi","doi":"10.4171/QT/172","DOIUrl":null,"url":null,"abstract":"For any natural number $n \\geq 2$, we construct a triangulated monoidal category whose Grothendieck ring is isomorphic to the ring of cyclotomic integers $\\mathbb{O}_n$.","PeriodicalId":51331,"journal":{"name":"Quantum Topology","volume":"32 1","pages":""},"PeriodicalIF":1.0000,"publicationDate":"2018-04-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Quantum Topology","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.4171/QT/172","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 2
Abstract
For any natural number $n \geq 2$, we construct a triangulated monoidal category whose Grothendieck ring is isomorphic to the ring of cyclotomic integers $\mathbb{O}_n$.
期刊介绍:
Quantum Topology is a peer reviewed journal dedicated to publishing original research articles, short communications, and surveys in quantum topology and related areas of mathematics. Topics covered include in particular:
Low-dimensional Topology
Knot Theory
Jones Polynomial and Khovanov Homology
Topological Quantum Field Theory
Quantum Groups and Hopf Algebras
Mapping Class Groups and Teichmüller space
Categorification
Braid Groups and Braided Categories
Fusion Categories
Subfactors and Planar Algebras
Contact and Symplectic Topology
Topological Methods in Physics.