{"title":"Nonlocal Boundary Value Problems for (k,ψ)-Hilfer Fractional Differential Equations and Inclusions","authors":"S. Ntouyas, B. Ahmad, J. Tariboon","doi":"10.3390/foundations2030046","DOIUrl":null,"url":null,"abstract":"In the present research, single and multi-valued (k,ψ)-Hilfer type fractional boundary value problems of order in (1,2] involving nonlocal integral boundary conditions were studied. In the single-valued case, the Banach and Krasnosel’skiĭ fixed point theorems as well as the Leray–Schauder nonlinear alternative were used to establish the existence and uniqueness results. In the multi-valued case, when the right-hand side of the inclusion has convex values, we established an existence result via the Leray–Schauder nonlinear alternative method for multi-valued maps, while the second existence result, dealing with the non-convex valued right-hand side of the inclusion, was obtained by applying Covitz-Nadler fixed point theorem for multi-valued contractions. The obtained theoretical results are well illustrated by the numerical examples provided.","PeriodicalId":81291,"journal":{"name":"Foundations","volume":"34 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2022-08-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Foundations","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3390/foundations2030046","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3
Abstract
In the present research, single and multi-valued (k,ψ)-Hilfer type fractional boundary value problems of order in (1,2] involving nonlocal integral boundary conditions were studied. In the single-valued case, the Banach and Krasnosel’skiĭ fixed point theorems as well as the Leray–Schauder nonlinear alternative were used to establish the existence and uniqueness results. In the multi-valued case, when the right-hand side of the inclusion has convex values, we established an existence result via the Leray–Schauder nonlinear alternative method for multi-valued maps, while the second existence result, dealing with the non-convex valued right-hand side of the inclusion, was obtained by applying Covitz-Nadler fixed point theorem for multi-valued contractions. The obtained theoretical results are well illustrated by the numerical examples provided.