Md. F. Abdullah, P. Pal, S. Patel, K. Chandrakanta, R. Jena, A. Singh
{"title":"Study of dielectric and magnetodielectric properties of Y-type Ba2Mg1.5Ni0.5Fe12O22 hexaferrite","authors":"Md. F. Abdullah, P. Pal, S. Patel, K. Chandrakanta, R. Jena, A. Singh","doi":"10.1063/1.5130368","DOIUrl":null,"url":null,"abstract":"We have investigated dielectric and magnetodielectric (MD) properties of polycrystalline Y-type hexaferrite Ba2Mg1.5Ni0.5Fe12O22 (BMNF). Rietveld refinement of the X-ray diffraction pattern and hexagonal plate-like Field Emission Scanning Electron Microscope (FESEM) micrograph confirms the phase purity with the rhombohedral crystal structure (R-3m space group). Both temperatures dependent dielectric permittivity (e׳) and dielectric loss (tan δ) show an anomaly around 150°C and 290°C. The comparable value of activation energy extracted from impedance spectroscopy above 290°C between σg and σgb indicates that relaxation and conduction mechanism may be attributing to the same entities. Room temperature magnetodielectric (MD) measurement at 1MHz indicates the step like increase at ∼8 kOe in dielectric constant (e) with applied field but a reverse trend is observed for magneto-loss (ML) with step like feature preserving it nature.We have investigated dielectric and magnetodielectric (MD) properties of polycrystalline Y-type hexaferrite Ba2Mg1.5Ni0.5Fe12O22 (BMNF). Rietveld refinement of the X-ray diffraction pattern and hexagonal plate-like Field Emission Scanning Electron Microscope (FESEM) micrograph confirms the phase purity with the rhombohedral crystal structure (R-3m space group). Both temperatures dependent dielectric permittivity (e׳) and dielectric loss (tan δ) show an anomaly around 150°C and 290°C. The comparable value of activation energy extracted from impedance spectroscopy above 290°C between σg and σgb indicates that relaxation and conduction mechanism may be attributing to the same entities. Room temperature magnetodielectric (MD) measurement at 1MHz indicates the step like increase at ∼8 kOe in dielectric constant (e) with applied field but a reverse trend is observed for magneto-loss (ML) with step like feature preserving it nature.","PeriodicalId":20725,"journal":{"name":"PROCEEDINGS OF THE INTERNATIONAL CONFERENCE ON ADVANCED MATERIALS: ICAM 2019","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2019-10-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"PROCEEDINGS OF THE INTERNATIONAL CONFERENCE ON ADVANCED MATERIALS: ICAM 2019","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1063/1.5130368","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
We have investigated dielectric and magnetodielectric (MD) properties of polycrystalline Y-type hexaferrite Ba2Mg1.5Ni0.5Fe12O22 (BMNF). Rietveld refinement of the X-ray diffraction pattern and hexagonal plate-like Field Emission Scanning Electron Microscope (FESEM) micrograph confirms the phase purity with the rhombohedral crystal structure (R-3m space group). Both temperatures dependent dielectric permittivity (e׳) and dielectric loss (tan δ) show an anomaly around 150°C and 290°C. The comparable value of activation energy extracted from impedance spectroscopy above 290°C between σg and σgb indicates that relaxation and conduction mechanism may be attributing to the same entities. Room temperature magnetodielectric (MD) measurement at 1MHz indicates the step like increase at ∼8 kOe in dielectric constant (e) with applied field but a reverse trend is observed for magneto-loss (ML) with step like feature preserving it nature.We have investigated dielectric and magnetodielectric (MD) properties of polycrystalline Y-type hexaferrite Ba2Mg1.5Ni0.5Fe12O22 (BMNF). Rietveld refinement of the X-ray diffraction pattern and hexagonal plate-like Field Emission Scanning Electron Microscope (FESEM) micrograph confirms the phase purity with the rhombohedral crystal structure (R-3m space group). Both temperatures dependent dielectric permittivity (e׳) and dielectric loss (tan δ) show an anomaly around 150°C and 290°C. The comparable value of activation energy extracted from impedance spectroscopy above 290°C between σg and σgb indicates that relaxation and conduction mechanism may be attributing to the same entities. Room temperature magnetodielectric (MD) measurement at 1MHz indicates the step like increase at ∼8 kOe in dielectric constant (e) with applied field but a reverse trend is observed for magneto-loss (ML) with step like feature preserving it nature.