Analysis of the Unique Mechanics of Shear Localization in Metal Cutting Processes

M. Fazlali, M. Ponga, Xiaoliang Jin
{"title":"Analysis of the Unique Mechanics of Shear Localization in Metal Cutting Processes","authors":"M. Fazlali, M. Ponga, Xiaoliang Jin","doi":"10.1115/msec2022-85645","DOIUrl":null,"url":null,"abstract":"\n Recent experimental observations show that the frequency of stress and temperature fluctuations on the cutting tool’s rake face and the frequency of residual stress fluctuation at the finished surface of the workpiece are equal to the shear band formation’s frequency. In this article, new experimental observations of the shear band formation in cutting processes are presented. Then, the spacing between neighboring shear bands (which determines the shear band formation’s frequency) is obtained from different theoretical methods and compared with the experimental results. It is shown that the shear band spacing in cutting processes cannot be obtained from the theories developed in other dynamic deformation applications, including dynamic compression and torsion tests and ballistic impacts, due to the unique mechanics of cutting. In addition, we show that due to the intense plastic deformation in the primary deformation zone, the cooling rate of the shear band formed during cutting processes is considerably higher than the workshop cooling rates (6.85 × 108 K·s−1 for the cutting speed of 60 m·min−1 compared to 50 K·s−1 - 2 × 104 K·s−1 for workshop cooling rate of Ti-6Al-4V). The rapid cooling rate indicates the considerable amount of heat transferred into the cutting tool and explains the ductile to brittle transition in the fracture mechanism of shear band formation in cutting processes.","PeriodicalId":23676,"journal":{"name":"Volume 2: Manufacturing Processes; Manufacturing Systems; Nano/Micro/Meso Manufacturing; Quality and Reliability","volume":"24 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2022-06-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Volume 2: Manufacturing Processes; Manufacturing Systems; Nano/Micro/Meso Manufacturing; Quality and Reliability","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1115/msec2022-85645","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Recent experimental observations show that the frequency of stress and temperature fluctuations on the cutting tool’s rake face and the frequency of residual stress fluctuation at the finished surface of the workpiece are equal to the shear band formation’s frequency. In this article, new experimental observations of the shear band formation in cutting processes are presented. Then, the spacing between neighboring shear bands (which determines the shear band formation’s frequency) is obtained from different theoretical methods and compared with the experimental results. It is shown that the shear band spacing in cutting processes cannot be obtained from the theories developed in other dynamic deformation applications, including dynamic compression and torsion tests and ballistic impacts, due to the unique mechanics of cutting. In addition, we show that due to the intense plastic deformation in the primary deformation zone, the cooling rate of the shear band formed during cutting processes is considerably higher than the workshop cooling rates (6.85 × 108 K·s−1 for the cutting speed of 60 m·min−1 compared to 50 K·s−1 - 2 × 104 K·s−1 for workshop cooling rate of Ti-6Al-4V). The rapid cooling rate indicates the considerable amount of heat transferred into the cutting tool and explains the ductile to brittle transition in the fracture mechanism of shear band formation in cutting processes.
金属切削过程中剪切局部化的独特力学分析
最近的实验观察表明,刀具前刀面应力和温度波动的频率以及工件加工表面残余应力波动的频率与剪切带形成的频率相等。本文介绍了切削过程中剪切带形成的新实验观察结果。然后,用不同的理论方法得到相邻剪切带之间的间距(决定剪切带形成的频率),并与实验结果进行比较。结果表明,由于切削过程的独特力学特性,切削过程中的剪切带间距无法从其他动态变形应用(包括动态压缩和动态扭转试验以及弹道冲击)中发展的理论中得到。此外,由于原始变形区发生了强烈的塑性变形,切削过程中形成的剪切带的冷却速率明显高于车间冷却速率(切削速度为60 m·min - 1时为6.85 × 108 K·s - 1,而Ti-6Al-4V的车间冷却速率为50 K·s - 1 ~ 2 × 104 K·s - 1)。快速的冷却速度表明有大量的热量传递到刀具中,并解释了切削过程中剪切带形成的断裂机制中韧性到脆性的转变。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信