A Smartphone -Based Model for Human Activity Recognition

A. Al-Taei
{"title":"A Smartphone -Based Model for Human Activity Recognition","authors":"A. Al-Taei","doi":"10.30526/30.3.1628","DOIUrl":null,"url":null,"abstract":"Activity recognition (AR) is a new interesting and challenging research area with many applications (e.g. healthcare, security, and event detection). Basically, activity recognition (e.g. identifying user’s physical activity) is more likely to be considered as a classification problem. In this paper, a combination of 7 classification methods is employed and experimented on accelerometer data collected via smartphones, and compared for best performance. The dataset is collected from 59 individuals who performed 6 different activities (i.e. walk, jog, sit, stand, upstairs, and downstairs). The total number of dataset instances is 5418 with 46 labeled features. The results show that the proposed method of ensemble boost-based classifier overperforms other classifiers that were examined in this research paper.","PeriodicalId":13236,"journal":{"name":"Ibn Al-Haitham Journal For Pure And Applied Science","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2017-12-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Ibn Al-Haitham Journal For Pure And Applied Science","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.30526/30.3.1628","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

Abstract

Activity recognition (AR) is a new interesting and challenging research area with many applications (e.g. healthcare, security, and event detection). Basically, activity recognition (e.g. identifying user’s physical activity) is more likely to be considered as a classification problem. In this paper, a combination of 7 classification methods is employed and experimented on accelerometer data collected via smartphones, and compared for best performance. The dataset is collected from 59 individuals who performed 6 different activities (i.e. walk, jog, sit, stand, upstairs, and downstairs). The total number of dataset instances is 5418 with 46 labeled features. The results show that the proposed method of ensemble boost-based classifier overperforms other classifiers that were examined in this research paper.
基于智能手机的人体活动识别模型
活动识别(AR)是一个有趣且具有挑战性的新研究领域,有许多应用(例如医疗保健、安全和事件检测)。基本上,活动识别(例如识别用户的身体活动)更可能被认为是一个分类问题。本文结合7种分类方法,对通过智能手机采集的加速度计数据进行了实验,并比较了最佳性能。数据集是从59个人中收集的,他们进行了6种不同的活动(即散步、慢跑、坐着、站着、上楼和下楼)。数据集实例总数为5418个,带有46个标记特征。结果表明,本文提出的基于集成提升的分类器方法优于本文所研究的其他分类器。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信