K2DPCA Plus 2DPCA: An Efficient Approach for Appearance Based Object Recognition

Chengbo Yu, Huafeng Qing, Lian Zhang
{"title":"K2DPCA Plus 2DPCA: An Efficient Approach for Appearance Based Object Recognition","authors":"Chengbo Yu, Huafeng Qing, Lian Zhang","doi":"10.1109/ICBBE.2009.5163001","DOIUrl":null,"url":null,"abstract":"In this paper, we propose a new object recognition algorithm called two-directional two-dimensional kernel-based principal component analysis(K2DPCA plus 2DPCA). This approach mainly analyzes the object in the two dimensional principal component analysis (2DPCA) transformed space. Firstly, decorrelation in the row direction of images by through the standard K2DPCA method, then using 2DPCA way to further decorrelation in the column direction of images in the K2DPCA subspace. To overcome the shortcoming of massive memory requirements of the 2DPCA and 2D-FPCA, we introduce K2DPCA plus 2DPCA method, which needs smaller memory space and has higher discernment rate, and computational efficiency is higher than the standard KPCA /K2DPCA/(2D) 2 FPCA method. Finally, we verify this method in the finger vein database.","PeriodicalId":6430,"journal":{"name":"2009 3rd International Conference on Bioinformatics and Biomedical Engineering","volume":"36 1","pages":"1-4"},"PeriodicalIF":0.0000,"publicationDate":"2009-06-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"10","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2009 3rd International Conference on Bioinformatics and Biomedical Engineering","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICBBE.2009.5163001","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 10

Abstract

In this paper, we propose a new object recognition algorithm called two-directional two-dimensional kernel-based principal component analysis(K2DPCA plus 2DPCA). This approach mainly analyzes the object in the two dimensional principal component analysis (2DPCA) transformed space. Firstly, decorrelation in the row direction of images by through the standard K2DPCA method, then using 2DPCA way to further decorrelation in the column direction of images in the K2DPCA subspace. To overcome the shortcoming of massive memory requirements of the 2DPCA and 2D-FPCA, we introduce K2DPCA plus 2DPCA method, which needs smaller memory space and has higher discernment rate, and computational efficiency is higher than the standard KPCA /K2DPCA/(2D) 2 FPCA method. Finally, we verify this method in the finger vein database.
K2DPCA + 2DPCA:一种基于外观的目标识别方法
本文提出了一种新的目标识别算法——双向二维核主成分分析(K2DPCA + 2DPCA)。该方法主要在二维主成分分析(2DPCA)变换空间中对目标进行分析。首先通过标准的K2DPCA方法对图像行方向进行去相关,然后在K2DPCA子空间中使用2DPCA方法对图像的列方向进行去相关。为了克服2DPCA和2D-FPCA需要大量内存的缺点,我们引入了K2DPCA + 2DPCA方法,该方法需要更小的内存空间,具有更高的识别率,并且计算效率高于标准的KPCA /K2DPCA/(2D) 2 FPCA方法。最后,我们在手指静脉数据库中验证了该方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信