Jonathan Macuroy, R. Takahashi, Akira Hara, Yoshinori Okaue, A. Imai, Pearlyn C. Manalo, Hinako Sato, A. Agangi
{"title":"Lateral variations in the Hosen 8‐2 vein in the Hishikari deposit, Japan: Implications for high Au‐grade zone","authors":"Jonathan Macuroy, R. Takahashi, Akira Hara, Yoshinori Okaue, A. Imai, Pearlyn C. Manalo, Hinako Sato, A. Agangi","doi":"10.1111/rge.12318","DOIUrl":null,"url":null,"abstract":"Lateral sampling of each blasting interval (~ 2.6 m) along a 79 m strike length was conducted for the Hosen 8‐2 vein on the −5 ML (mining level, meters relative to sea level) of the Main ore zone in the Hishikari epithermal Au deposit, Kagoshima, Japan. The horizontal variation of mineral textures, bulk chemical compositions, and fluid inclusion temperatures and apparent salinity of ore fluids were determined. The major gangue minerals of the quartz veins studied include quartz and adularia with minor amounts of calcite and smectite. The major ore minerals include electrum, galena, and sphalerite with minor pyrite, petzite, and hessite. Electrum commonly occurs in a discrete band with microcrystalline quartz, granular adularia, and smectite. The electrum‐bearing band is followed by tabular adularia, and finally by granular or comb quartz. Mineral textures that indicate high degrees of supersaturation with respect to amorphous silica (presently quartz with microcrystalline/mosaic and feathery textures) and adularia (with tabular, rhombic, and granular textures) were common throughout the vein strike. Bulk chemical analyses indicate that Au grade is positively correlated with Ag, Bi, Pb, and Te contents. A bonanza zone with Au grades up to 10,800 ppm occurs in the central part of the Hosen 8‐2 vein on the −5 ML, and is associated with high adularia content, calculated as adularia / (quartz + adularia). The wide lateral variation in the geochemical composition contrasts with the consistent association of electrum with microcrystalline quartz, granular adularia, and smectite throughout the Hosen 8‐2 vein on the −5 ML. Fluid inclusion microthermometry of primary and pseudosecondary inclusions in quartz and adularia yielded histogram modes of homogenization temperature between 160 and 240°C; the most frequent mode is 200–210°C, with most data within ±10°C from this value. The maximum ice‐melting temperature of most samples excluding late comb quartz is −1.5°C, which is equivalent to an apparent salinity of 2.6 wt% NaCl eq. The wide variation in ice‐melting temperatures and apparent salinities (up to 5.2 wt% NaCl eq.) may be due to dissolved CO2 in the fluids, while the sharp decrease in apparent salinity with temperature decrease indicates CO2 loss due to fluid boiling during vein formation. The intimate association of electrum with microcrystalline quartz that recrystallized from amorphous silica indicate sharp boiling and vapor loss as the primary mechanism of Au deposition in the Hosen 8‐2 vein.","PeriodicalId":21089,"journal":{"name":"Resource Geology","volume":"20 1","pages":""},"PeriodicalIF":1.1000,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Resource Geology","FirstCategoryId":"89","ListUrlMain":"https://doi.org/10.1111/rge.12318","RegionNum":4,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"GEOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Lateral sampling of each blasting interval (~ 2.6 m) along a 79 m strike length was conducted for the Hosen 8‐2 vein on the −5 ML (mining level, meters relative to sea level) of the Main ore zone in the Hishikari epithermal Au deposit, Kagoshima, Japan. The horizontal variation of mineral textures, bulk chemical compositions, and fluid inclusion temperatures and apparent salinity of ore fluids were determined. The major gangue minerals of the quartz veins studied include quartz and adularia with minor amounts of calcite and smectite. The major ore minerals include electrum, galena, and sphalerite with minor pyrite, petzite, and hessite. Electrum commonly occurs in a discrete band with microcrystalline quartz, granular adularia, and smectite. The electrum‐bearing band is followed by tabular adularia, and finally by granular or comb quartz. Mineral textures that indicate high degrees of supersaturation with respect to amorphous silica (presently quartz with microcrystalline/mosaic and feathery textures) and adularia (with tabular, rhombic, and granular textures) were common throughout the vein strike. Bulk chemical analyses indicate that Au grade is positively correlated with Ag, Bi, Pb, and Te contents. A bonanza zone with Au grades up to 10,800 ppm occurs in the central part of the Hosen 8‐2 vein on the −5 ML, and is associated with high adularia content, calculated as adularia / (quartz + adularia). The wide lateral variation in the geochemical composition contrasts with the consistent association of electrum with microcrystalline quartz, granular adularia, and smectite throughout the Hosen 8‐2 vein on the −5 ML. Fluid inclusion microthermometry of primary and pseudosecondary inclusions in quartz and adularia yielded histogram modes of homogenization temperature between 160 and 240°C; the most frequent mode is 200–210°C, with most data within ±10°C from this value. The maximum ice‐melting temperature of most samples excluding late comb quartz is −1.5°C, which is equivalent to an apparent salinity of 2.6 wt% NaCl eq. The wide variation in ice‐melting temperatures and apparent salinities (up to 5.2 wt% NaCl eq.) may be due to dissolved CO2 in the fluids, while the sharp decrease in apparent salinity with temperature decrease indicates CO2 loss due to fluid boiling during vein formation. The intimate association of electrum with microcrystalline quartz that recrystallized from amorphous silica indicate sharp boiling and vapor loss as the primary mechanism of Au deposition in the Hosen 8‐2 vein.
期刊介绍:
Resource Geology is an international journal focusing on economic geology, geochemistry and environmental geology. Its purpose is to contribute to the promotion of earth sciences related to metallic and non-metallic mineral deposits mainly in Asia, Oceania and the Circum-Pacific region, although other parts of the world are also considered.
Launched in 1998 by the Society for Resource Geology, the journal is published quarterly in English, making it more accessible to the international geological community. The journal publishes high quality papers of interest to those engaged in research and exploration of mineral deposits.