Level-set percolation for the Gaussian free field on a transient tree

IF 1.2 2区 数学 Q2 STATISTICS & PROBABILITY
Angelo Abacherli, A. Sznitman
{"title":"Level-set percolation for the Gaussian free field on a transient tree","authors":"Angelo Abacherli, A. Sznitman","doi":"10.1214/16-AIHP799","DOIUrl":null,"url":null,"abstract":"We investigate level-set percolation of the Gaussian free field on transient trees, for instance on super-critical Galton-Watson trees conditioned on non-extinction. Recently developed Dynkin-type isomorphism theorems provide a comparison with percolation of the vacant set of random interlacements, which is more tractable in the case of trees. If $h_*$ and $u_*$ denote the respective (non-negative) critical values of level-set percolation of the Gaussian free field and of the vacant set of random interlacements, we show here that $h_* 0$.","PeriodicalId":7902,"journal":{"name":"Annales De L Institut Henri Poincare-probabilites Et Statistiques","volume":"2 1","pages":"173-201"},"PeriodicalIF":1.2000,"publicationDate":"2016-06-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"20","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Annales De L Institut Henri Poincare-probabilites Et Statistiques","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1214/16-AIHP799","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"STATISTICS & PROBABILITY","Score":null,"Total":0}
引用次数: 20

Abstract

We investigate level-set percolation of the Gaussian free field on transient trees, for instance on super-critical Galton-Watson trees conditioned on non-extinction. Recently developed Dynkin-type isomorphism theorems provide a comparison with percolation of the vacant set of random interlacements, which is more tractable in the case of trees. If $h_*$ and $u_*$ denote the respective (non-negative) critical values of level-set percolation of the Gaussian free field and of the vacant set of random interlacements, we show here that $h_* 0$.
瞬态树上高斯自由场的水平集渗透
我们研究了瞬态树上高斯自由场的水平集渗透,例如在非消光条件下的超临界高尔顿-沃森树上。最近发展的dynkin型同构定理提供了与随机交错空集渗透的比较,这在树的情况下更容易处理。如果$h_*$和$u_*$分别表示高斯自由场的水平集渗透和随机交错空集的水平集渗透的(非负)临界值,我们在这里表明$h_* 0$。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
2.70
自引率
0.00%
发文量
85
审稿时长
6-12 weeks
期刊介绍: The Probability and Statistics section of the Annales de l’Institut Henri Poincaré is an international journal which publishes high quality research papers. The journal deals with all aspects of modern probability theory and mathematical statistics, as well as with their applications.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信