Judith Habicher , Remy Manuel , Andrea Pedroni , Charles Ferebee , Konstantinos Ampatzis , Henrik Boije
{"title":"A new transgenic reporter line reveals expression of protocadherin 9 at a cellular level within the zebrafish central nervous system","authors":"Judith Habicher , Remy Manuel , Andrea Pedroni , Charles Ferebee , Konstantinos Ampatzis , Henrik Boije","doi":"10.1016/j.gep.2022.119246","DOIUrl":null,"url":null,"abstract":"<div><p>The wiring of neuronal networks is far from understood. One outstanding question is how neurons of different types link up to form subnetworks within the greater context. Cadherins have been suggested to create an inclusion code where interconnected neurons express the same subtypes. Here, we have used a CRISPR/Cas9 knock-in approach to generate a transgenic zebrafish reporter line for protocadherin 9 (<em>pcdh9</em>), which is predominantly expressed within the central nervous system. Expression of eGFP was detected in subsets of neurons in the cerebellum, retina and spinal cord, in both larvae and juveniles. A closer characterization of the spinal locomotor network revealed that a portion of distinct classes of both excitatory and inhibitory interneurons, as well as motor neurons, expressed <em>pcdh9</em>. This transgenic line could thus be used to test the cadherin network hypothesis, through electrophysiological characterization of eGFP positive cells, to show if these are synaptically connected and form a discrete network within the spinal cord.</p></div>","PeriodicalId":55598,"journal":{"name":"Gene Expression Patterns","volume":"44 ","pages":"Article 119246"},"PeriodicalIF":1.0000,"publicationDate":"2022-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S1567133X22000163/pdfft?md5=c4c251f4174dc8361615278519c3ea5a&pid=1-s2.0-S1567133X22000163-main.pdf","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Gene Expression Patterns","FirstCategoryId":"99","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1567133X22000163","RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"DEVELOPMENTAL BIOLOGY","Score":null,"Total":0}
引用次数: 2
Abstract
The wiring of neuronal networks is far from understood. One outstanding question is how neurons of different types link up to form subnetworks within the greater context. Cadherins have been suggested to create an inclusion code where interconnected neurons express the same subtypes. Here, we have used a CRISPR/Cas9 knock-in approach to generate a transgenic zebrafish reporter line for protocadherin 9 (pcdh9), which is predominantly expressed within the central nervous system. Expression of eGFP was detected in subsets of neurons in the cerebellum, retina and spinal cord, in both larvae and juveniles. A closer characterization of the spinal locomotor network revealed that a portion of distinct classes of both excitatory and inhibitory interneurons, as well as motor neurons, expressed pcdh9. This transgenic line could thus be used to test the cadherin network hypothesis, through electrophysiological characterization of eGFP positive cells, to show if these are synaptically connected and form a discrete network within the spinal cord.
期刊介绍:
Gene Expression Patterns is devoted to the rapid publication of high quality studies of gene expression in development. Studies using cell culture are also suitable if clearly relevant to development, e.g., analysis of key regulatory genes or of gene sets in the maintenance or differentiation of stem cells. Key areas of interest include:
-In-situ studies such as expression patterns of important or interesting genes at all levels, including transcription and protein expression
-Temporal studies of large gene sets during development
-Transgenic studies to study cell lineage in tissue formation