Left Ventricle Segmentation in Cardiac MRI Images

Marwa M. A. Hadhoud, M. Eladawy, A. Farag, F. Montevecchi, U. Morbiducci
{"title":"Left Ventricle Segmentation in Cardiac MRI Images","authors":"Marwa M. A. Hadhoud, M. Eladawy, A. Farag, F. Montevecchi, U. Morbiducci","doi":"10.5923/J.AJBE.20120203.07","DOIUrl":null,"url":null,"abstract":"Imaging of the left ventricle using cine short-axis MRI sequences, considered as an important tool that used for evaluating cardiac function by calculating different cardiac parameters. The manual segmentation of the left ventricle in all image sequences takes a lot of time, and therefore the automatic segmentation of the left ventricle is main step in cardiac function evaluation. In this paper, we proposed an automatic method for segmenting the left ventricle in cardiac MRI images. We applied pixel classification method by using number of features and KNN classifier for segmenting the left ventricle Cavity, and from its output we can get the endocardial contour. Then, we transformed image pixels from Cartesian to polar coordinates for segmenting the epicardial contour. This method was tested on large number of images, and we achieved good results reached to 95.61% sensitivity, and 98.9% specificity for endocardium segmentation, and 93.32% sensitivity, and 98.49% specificity for epicardium segmentation. The results of the proposed method show the availability for fast and reliable segmentation of the left ventricle.","PeriodicalId":7620,"journal":{"name":"American Journal of Biomedical Engineering","volume":"45 1","pages":"131-135"},"PeriodicalIF":0.0000,"publicationDate":"2012-08-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"27","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"American Journal of Biomedical Engineering","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.5923/J.AJBE.20120203.07","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 27

Abstract

Imaging of the left ventricle using cine short-axis MRI sequences, considered as an important tool that used for evaluating cardiac function by calculating different cardiac parameters. The manual segmentation of the left ventricle in all image sequences takes a lot of time, and therefore the automatic segmentation of the left ventricle is main step in cardiac function evaluation. In this paper, we proposed an automatic method for segmenting the left ventricle in cardiac MRI images. We applied pixel classification method by using number of features and KNN classifier for segmenting the left ventricle Cavity, and from its output we can get the endocardial contour. Then, we transformed image pixels from Cartesian to polar coordinates for segmenting the epicardial contour. This method was tested on large number of images, and we achieved good results reached to 95.61% sensitivity, and 98.9% specificity for endocardium segmentation, and 93.32% sensitivity, and 98.49% specificity for epicardium segmentation. The results of the proposed method show the availability for fast and reliable segmentation of the left ventricle.
心脏MRI图像中的左心室分割
使用短轴MRI序列对左心室进行成像,被认为是通过计算不同心脏参数来评估心功能的重要工具。人工分割所有图像序列的左心室需要大量的时间,因此自动分割左心室是心功能评价的主要步骤。本文提出了一种自动分割心脏MRI左心室图像的方法。我们采用像素分类方法,利用特征数和KNN分类器对左心室腔进行分割,并从其输出得到心内膜轮廓。然后,将图像像素从笛卡尔坐标转换为极坐标,分割心外膜轮廓。该方法在大量图像上进行了测试,获得了良好的效果,对心内膜分割的灵敏度为95.61%,特异性为98.9%;对心外膜分割的灵敏度为93.32%,特异性为98.49%。实验结果表明,该方法可以快速、可靠地分割左心室。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信