Hong-Yu Yang , Zheng Wang , Liang-Yu Chen , Shi-Li Shu , Feng Qiu , Lai-Chang Zhang
{"title":"Interface formation and bonding control in high-volume-fraction (TiC+TiB2)/Al composites and their roles in enhancing properties","authors":"Hong-Yu Yang , Zheng Wang , Liang-Yu Chen , Shi-Li Shu , Feng Qiu , Lai-Chang Zhang","doi":"10.1016/j.compositesb.2021.108605","DOIUrl":null,"url":null,"abstract":"<div><p><span>As interfaces play a more important role in high-volume-fraction ceramic/metal composites because of containing more hetero-phase interfaces, it is a great challenge to control the interfaces in such composites to balance their strength and plasticity and to obtain high performances. In this work, 50–60 vol% (TiC + TiB</span><sub>2</sub>)/Al composites were fabricated in Al–Ti–B<sub>4</sub>C system <em>via</em><span><span> a one-step method of reaction and densification, and their interface bonding and </span>mechanical properties were compared with those of in-situ TiC/Al composites. Apparently, the defects, such as interfacial discontinuity, macro-pores, coarsening and agglomeration of particles, caused by increased ceramic content in the TiC/Al composites, are eliminated in the (TiC + TiB</span><sub>2</sub>)/Al composites using Al–Ti–B<sub>4</sub>C system. The 60 vol% (TiC + TiB<sub>2</sub><span><span>)/Al composite exhibits significantly enhanced mechanical properties, i.e. 70.5%, 60.7% and 69.8% respectively higher yield strength, ultimate compressive strength and plastic strain than 60 vol% TiC/Al composite. Such enhanced mechanical properties are attributed to the improvement in interface bonding strength and therefore the increase in the </span>energy dissipation<span> of crack propagation. The formation of enhanced interface in the (TiC + TiB</span></span><sub>2</sub>)/Al composites results from the reduction in the reaction heat in the Al–Ti–B<sub>4</sub>C system, improved crystallographic match and improved adhesion work between ceramic particles and matrix. This work may provide a new idea for the design and control of interfaces in high-volume-fraction ceramic-metal composites.</p></div>","PeriodicalId":10660,"journal":{"name":"Composites Part B: Engineering","volume":null,"pages":null},"PeriodicalIF":12.7000,"publicationDate":"2021-03-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1016/j.compositesb.2021.108605","citationCount":"107","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Composites Part B: Engineering","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1359836821000020","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 107
Abstract
As interfaces play a more important role in high-volume-fraction ceramic/metal composites because of containing more hetero-phase interfaces, it is a great challenge to control the interfaces in such composites to balance their strength and plasticity and to obtain high performances. In this work, 50–60 vol% (TiC + TiB2)/Al composites were fabricated in Al–Ti–B4C system via a one-step method of reaction and densification, and their interface bonding and mechanical properties were compared with those of in-situ TiC/Al composites. Apparently, the defects, such as interfacial discontinuity, macro-pores, coarsening and agglomeration of particles, caused by increased ceramic content in the TiC/Al composites, are eliminated in the (TiC + TiB2)/Al composites using Al–Ti–B4C system. The 60 vol% (TiC + TiB2)/Al composite exhibits significantly enhanced mechanical properties, i.e. 70.5%, 60.7% and 69.8% respectively higher yield strength, ultimate compressive strength and plastic strain than 60 vol% TiC/Al composite. Such enhanced mechanical properties are attributed to the improvement in interface bonding strength and therefore the increase in the energy dissipation of crack propagation. The formation of enhanced interface in the (TiC + TiB2)/Al composites results from the reduction in the reaction heat in the Al–Ti–B4C system, improved crystallographic match and improved adhesion work between ceramic particles and matrix. This work may provide a new idea for the design and control of interfaces in high-volume-fraction ceramic-metal composites.
期刊介绍:
Composites Part B: Engineering is a journal that publishes impactful research of high quality on composite materials. This research is supported by fundamental mechanics and materials science and engineering approaches. The targeted research can cover a wide range of length scales, ranging from nano to micro and meso, and even to the full product and structure level. The journal specifically focuses on engineering applications that involve high performance composites. These applications can range from low volume and high cost to high volume and low cost composite development.
The main goal of the journal is to provide a platform for the prompt publication of original and high quality research. The emphasis is on design, development, modeling, validation, and manufacturing of engineering details and concepts. The journal welcomes both basic research papers and proposals for review articles. Authors are encouraged to address challenges across various application areas. These areas include, but are not limited to, aerospace, automotive, and other surface transportation. The journal also covers energy-related applications, with a focus on renewable energy. Other application areas include infrastructure, off-shore and maritime projects, health care technology, and recreational products.