Mitigating Reverse Engineering Attacks on Deep Neural Networks

Yuntao Liu, D. Dachman-Soled, Ankur Srivastava
{"title":"Mitigating Reverse Engineering Attacks on Deep Neural Networks","authors":"Yuntao Liu, D. Dachman-Soled, Ankur Srivastava","doi":"10.1109/ISVLSI.2019.00122","DOIUrl":null,"url":null,"abstract":"With the structure of deep neural networks (DNN) being of increasing commercial value, DNN reverse engineering attacks have become a great security concern. It has been shown that the memory access pattern of a processor running DNNs can be exploited to decipher their detailed structure. In this work, we propose a defensive memory access mechanism which utilizes oblivious shuffle, address space layout randomization, and dummy memory accesses to counter such attacks. Experiments show that our defense exponentially increases the attack complexity with asymptotically lower memory access overhead compared to generic memory obfuscation techniques such as ORAM and is scalable to larger DNNs.","PeriodicalId":6703,"journal":{"name":"2019 IEEE Computer Society Annual Symposium on VLSI (ISVLSI)","volume":"10 1","pages":"657-662"},"PeriodicalIF":0.0000,"publicationDate":"2019-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"16","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2019 IEEE Computer Society Annual Symposium on VLSI (ISVLSI)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ISVLSI.2019.00122","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 16

Abstract

With the structure of deep neural networks (DNN) being of increasing commercial value, DNN reverse engineering attacks have become a great security concern. It has been shown that the memory access pattern of a processor running DNNs can be exploited to decipher their detailed structure. In this work, we propose a defensive memory access mechanism which utilizes oblivious shuffle, address space layout randomization, and dummy memory accesses to counter such attacks. Experiments show that our defense exponentially increases the attack complexity with asymptotically lower memory access overhead compared to generic memory obfuscation techniques such as ORAM and is scalable to larger DNNs.
减轻对深度神经网络的逆向工程攻击
随着深度神经网络(deep neural network, DNN)结构的商业价值越来越高,DNN逆向工程攻击已成为人们关注的一大安全问题。研究表明,运行深度神经网络的处理器的内存访问模式可以用来破译它们的详细结构。在这项工作中,我们提出了一种防御性内存访问机制,该机制利用无关洗牌,地址空间布局随机化和虚拟内存访问来对抗此类攻击。实验表明,与一般的内存混淆技术(如ORAM)相比,我们的防御以指数方式增加了攻击复杂性,并且内存访问开销渐近降低,并且可扩展到更大的dnn。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信