Sterically Stabilized Multilayer Graphene Nanoshells for Inkjet Printed Resistors

M. Orrill, Dustin T. Abele, M. Wagner, S. LeBlanc
{"title":"Sterically Stabilized Multilayer Graphene Nanoshells for Inkjet Printed Resistors","authors":"M. Orrill, Dustin T. Abele, M. Wagner, S. LeBlanc","doi":"10.3390/electronicmat2030027","DOIUrl":null,"url":null,"abstract":"In the field of printed electronics, there is a pressing need for printable resistors, particularly ones where the resistance can be varied without changing the size of the resistor. This work presents ink synthesis and printing results for variable resistance, inkjet-printed patterns of a novel and sustainable carbon nanomaterial—multilayer graphene nanoshells. Dispersed multilayer graphene nanospheres are sterically stabilized by a surfactant (Triton X100), and no post-process is required to achieve the resistive functionality. A surface tension-based adsorption analysis technique is used to determine the optimal surfactant dosage, and a geometric model explains the conformation of adsorbed surfactant molecules. The energetic interparticle potentials between approaching particles are modeled to assess and compare the stability of sterically and electrostatically stabilized multilayer graphene nanoshells. The multilayer graphene nanoshell inks presented here show a promising new pathway toward sustainable and practical printed resistors that achieve variable resistances within a constant areal footprint without post-processing.","PeriodicalId":18610,"journal":{"name":"Modern Electronic Materials","volume":"14 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2021-09-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Modern Electronic Materials","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3390/electronicmat2030027","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

In the field of printed electronics, there is a pressing need for printable resistors, particularly ones where the resistance can be varied without changing the size of the resistor. This work presents ink synthesis and printing results for variable resistance, inkjet-printed patterns of a novel and sustainable carbon nanomaterial—multilayer graphene nanoshells. Dispersed multilayer graphene nanospheres are sterically stabilized by a surfactant (Triton X100), and no post-process is required to achieve the resistive functionality. A surface tension-based adsorption analysis technique is used to determine the optimal surfactant dosage, and a geometric model explains the conformation of adsorbed surfactant molecules. The energetic interparticle potentials between approaching particles are modeled to assess and compare the stability of sterically and electrostatically stabilized multilayer graphene nanoshells. The multilayer graphene nanoshell inks presented here show a promising new pathway toward sustainable and practical printed resistors that achieve variable resistances within a constant areal footprint without post-processing.
用于喷墨印刷电阻器的立体稳定多层石墨烯纳米壳
在印刷电子领域,迫切需要可印刷的电阻,特别是那些可以在不改变电阻尺寸的情况下改变电阻的电阻。本文介绍了一种新型可持续碳纳米材料——多层石墨烯纳米壳的油墨合成和可变电阻喷墨打印结果。分散的多层石墨烯纳米球被表面活性剂(Triton X100)立体稳定,不需要后处理就能实现电阻功能。采用基于表面张力的吸附分析技术确定了表面活性剂的最佳用量,并用几何模型解释了吸附表面活性剂分子的构象。模拟了接近粒子之间的高能粒子间势,以评估和比较空间稳定和静电稳定多层石墨烯纳米壳的稳定性。本文提出的多层石墨烯纳米壳油墨为可持续和实用的印刷电阻器提供了一条有前途的新途径,可以在恒定的面积范围内实现可变电阻,而无需后处理。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
0.60
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信