{"title":"Combustion and material characterization of porous silicon nanoenergetics","authors":"N. Piekiel, W. Churaman, C. Morris, L. Currano","doi":"10.1109/MEMSYS.2013.6474275","DOIUrl":null,"url":null,"abstract":"Certain porous silicon (PS) structures have demonstrated energetic characteristics when mixed with an appropriate oxidizer [1-4]. However, limited studies on the effect of PS structure on its combustion have been performed. This work investigates how various material properties of PS films; surface area, porosity and pore size, affect the combustion process. With pore sizes in the range of 2.6-5.2 nm and surface area reaching over 900 m2/g, these materials are capable of considerably fast reactions. Combustion characterization is performed through high speed imaging at a rate of 930,000 frames per second. Propagation speeds in the current study range from 300-1950 m/s, and some relationships between the pore characteristics and the propagation velocity are observed.","PeriodicalId":92162,"journal":{"name":"2013 IEEE 26th International Conference on Micro Electro Mechanical Systems (MEMS 2013) : Taipei, Taiwan, 20-24 January 2013. IEEE International Conference on Micro Electro Mechanical Systems (26th : 2013 : Taipei, Taiwan)","volume":"20 1","pages":"449-452"},"PeriodicalIF":0.0000,"publicationDate":"2013-03-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"11","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2013 IEEE 26th International Conference on Micro Electro Mechanical Systems (MEMS 2013) : Taipei, Taiwan, 20-24 January 2013. IEEE International Conference on Micro Electro Mechanical Systems (26th : 2013 : Taipei, Taiwan)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/MEMSYS.2013.6474275","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 11
Abstract
Certain porous silicon (PS) structures have demonstrated energetic characteristics when mixed with an appropriate oxidizer [1-4]. However, limited studies on the effect of PS structure on its combustion have been performed. This work investigates how various material properties of PS films; surface area, porosity and pore size, affect the combustion process. With pore sizes in the range of 2.6-5.2 nm and surface area reaching over 900 m2/g, these materials are capable of considerably fast reactions. Combustion characterization is performed through high speed imaging at a rate of 930,000 frames per second. Propagation speeds in the current study range from 300-1950 m/s, and some relationships between the pore characteristics and the propagation velocity are observed.