{"title":"Introductory Chapter: The Overview of Phosphorous Recovery","authors":"Huanhuan Li, Tao Zhang","doi":"10.5772/INTECHOPEN.85967","DOIUrl":null,"url":null,"abstract":"Phosphorus (P) is a finite, non-substitutable, non-renewable, and geographically restricted resource. Substantial interest in P availability was sparked [1]. Some researchers demonstrated sufficient availability to sustain production beyond the twenty-first century, or a maximum occurring late twenty-first century [2–4]. But there are no financial incentives to support mineral resource inspections worldwide without the exploitation of phosphate deposits. The anthropogenic influences on this critical resource are likely to bring about a number of challenges to P sustainability. Advances in technology, public health, and food production over the last couple of centuries have fundamentally interrupted the natural global P cycle. Phosphate deposits have been mined to supply human production, which generated a mostly one-way flow of P from mines to farms to surface waters, ultimately impairing freshwater and coastal waters environment and function [5]. Rapid increases in human population and the subsequent need for high agricultural productivity have led to substantial increases in fertilizer use [6]. The P used as fertilizer consumes more than 80% of the P resources [7]. P is simultaneously an important non-renewable agricultural nutrient and an environmental pollutant [8].","PeriodicalId":20030,"journal":{"name":"Phosphorus - Recovery and Recycling","volume":"22 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2019-06-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Phosphorus - Recovery and Recycling","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.5772/INTECHOPEN.85967","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1
Abstract
Phosphorus (P) is a finite, non-substitutable, non-renewable, and geographically restricted resource. Substantial interest in P availability was sparked [1]. Some researchers demonstrated sufficient availability to sustain production beyond the twenty-first century, or a maximum occurring late twenty-first century [2–4]. But there are no financial incentives to support mineral resource inspections worldwide without the exploitation of phosphate deposits. The anthropogenic influences on this critical resource are likely to bring about a number of challenges to P sustainability. Advances in technology, public health, and food production over the last couple of centuries have fundamentally interrupted the natural global P cycle. Phosphate deposits have been mined to supply human production, which generated a mostly one-way flow of P from mines to farms to surface waters, ultimately impairing freshwater and coastal waters environment and function [5]. Rapid increases in human population and the subsequent need for high agricultural productivity have led to substantial increases in fertilizer use [6]. The P used as fertilizer consumes more than 80% of the P resources [7]. P is simultaneously an important non-renewable agricultural nutrient and an environmental pollutant [8].