On a relation between bipartite biregular cages, block designs and generalized polygons

IF 0.5 4区 数学 Q3 MATHEMATICS
G. Araujo-Pardo, R. Jajcay, Alejandra Ramos-Rivera, T. Szonyi
{"title":"On a relation between bipartite biregular cages, block designs and generalized polygons","authors":"G. Araujo-Pardo, R. Jajcay, Alejandra Ramos-Rivera, T. Szonyi","doi":"10.1002/jcd.21836","DOIUrl":null,"url":null,"abstract":"A bipartite biregular (m,n;g) $(m,n;g)$ ‐graph Γ ${\\rm{\\Gamma }}$ is a bipartite graph of even girth g $g$ having the degree set {m,n} $\\{m,n\\}$ and satisfying the additional property that the vertices in the same partite set have the same degree. An (m,n;g) $(m,n;g)$ ‐bipartite biregular cage is a bipartite biregular (m,n;g) $(m,n;g)$ ‐graph of minimum order. In their 2019 paper, Filipovski, Ramos‐Rivera, and Jajcay present lower bounds on the orders of bipartite biregular (m,n;g) $(m,n;g)$ ‐graphs, and call the graphs that attain these bounds bipartite biregular Moore cages. In our paper, we improve the lower bounds obtained in the above paper. Furthermore, in parallel with the well‐known classical results relating the existence of k $k$ ‐regular Moore graphs of even girths g=6,8 $g=6,8$ , and 12 to the existence of projective planes, generalized quadrangles, and generalized hexagons, we prove that the existence of an S(2,k,v) $S(2,k,v)$ ‐Steiner system yields the existence of a bipartite biregular k,v−1k−1;6 $\\left(k,\\frac{v-1}{k-1};6\\right)$ ‐cage, and, vice versa, the existence of a bipartite biregular (k,n;6) $(k,n;6)$ ‐cage whose order is equal to one of our lower bounds yields the existence of an S(2,k,1+n(k−1)) $S(2,k,1+n(k-1))$ ‐Steiner system. Moreover, with regard to the special case of Steiner triple systems, we completely solve the problem of determining the orders of (3,n;6) $(3,n;6)$ ‐bipartite biregular cages for all integers n≥4 $n\\ge 4$ . Considering girths higher than 6, we relate the existence of generalized polygons (quadrangles, hexagons, and octagons) to the existence of (n+1,n2+1;8) $(n+1,{n}^{2}+1;8)$ ‐, (n2+1,n3+1;8) $({n}^{2}+1,{n}^{3}+1;8)$ ‐, (n,n+2;8) $(n,n+2;8)$ ‐, (n+1,n3+1;12) $(n+1,{n}^{3}+1;12)$ ‐ and (n+1,n2+1;16) $(n+1,{n}^{2}+1;16)$ ‐bipartite biregular cages, respectively. Using this connection, we also derive improved upper bounds for the orders of other classes of bipartite biregular cages of girths 8, 12, and 14.","PeriodicalId":15389,"journal":{"name":"Journal of Combinatorial Designs","volume":"6 1","pages":"479 - 496"},"PeriodicalIF":0.5000,"publicationDate":"2022-03-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Combinatorial Designs","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1002/jcd.21836","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 1

Abstract

A bipartite biregular (m,n;g) $(m,n;g)$ ‐graph Γ ${\rm{\Gamma }}$ is a bipartite graph of even girth g $g$ having the degree set {m,n} $\{m,n\}$ and satisfying the additional property that the vertices in the same partite set have the same degree. An (m,n;g) $(m,n;g)$ ‐bipartite biregular cage is a bipartite biregular (m,n;g) $(m,n;g)$ ‐graph of minimum order. In their 2019 paper, Filipovski, Ramos‐Rivera, and Jajcay present lower bounds on the orders of bipartite biregular (m,n;g) $(m,n;g)$ ‐graphs, and call the graphs that attain these bounds bipartite biregular Moore cages. In our paper, we improve the lower bounds obtained in the above paper. Furthermore, in parallel with the well‐known classical results relating the existence of k $k$ ‐regular Moore graphs of even girths g=6,8 $g=6,8$ , and 12 to the existence of projective planes, generalized quadrangles, and generalized hexagons, we prove that the existence of an S(2,k,v) $S(2,k,v)$ ‐Steiner system yields the existence of a bipartite biregular k,v−1k−1;6 $\left(k,\frac{v-1}{k-1};6\right)$ ‐cage, and, vice versa, the existence of a bipartite biregular (k,n;6) $(k,n;6)$ ‐cage whose order is equal to one of our lower bounds yields the existence of an S(2,k,1+n(k−1)) $S(2,k,1+n(k-1))$ ‐Steiner system. Moreover, with regard to the special case of Steiner triple systems, we completely solve the problem of determining the orders of (3,n;6) $(3,n;6)$ ‐bipartite biregular cages for all integers n≥4 $n\ge 4$ . Considering girths higher than 6, we relate the existence of generalized polygons (quadrangles, hexagons, and octagons) to the existence of (n+1,n2+1;8) $(n+1,{n}^{2}+1;8)$ ‐, (n2+1,n3+1;8) $({n}^{2}+1,{n}^{3}+1;8)$ ‐, (n,n+2;8) $(n,n+2;8)$ ‐, (n+1,n3+1;12) $(n+1,{n}^{3}+1;12)$ ‐ and (n+1,n2+1;16) $(n+1,{n}^{2}+1;16)$ ‐bipartite biregular cages, respectively. Using this connection, we also derive improved upper bounds for the orders of other classes of bipartite biregular cages of girths 8, 12, and 14.
二部双正则网架、块设计与广义多边形的关系
一个二部双正则(m,n;g) $(m,n;g)$‐图Γ ${\rm{\Gamma }}$是一个周长为g $g$的二部图,它的度集为{m,n}$\{m,n\}$,并且满足同一部集中的顶点具有相同度的附加性质。(m,n;g) $(m,n;g)$‐二部双正则笼是最小阶的二部双正则(m,n;g) $(m,n;g)$‐图。在他们2019年的论文中,Filipovski、Ramos‐Rivera和Jajcay给出了二部双正则(m,n;g) $(m,n;g)$‐图的阶下界,并将达到这些边界的图称为二部双正则摩尔笼。在本文中,我们改进了上文中得到的下界。此外,在证明k $k$ -偶数周长g=6,8 $g=6,8$和12的正则摩尔图的存在性与射影平面、广义四边形和广义六边形的存在性的著名经典结果的基础上,我们证明了S(2,k,v) $S(2,k,v)$ - Steiner系统的存在性,从而证明了二部双正则k,v - 1k - 1;6 $\left(k,\frac{v-1}{k-1};6\right)$ -笼的存在性,反之亦然。如果存在一个二阶双正则(k,n;6) $(k,n;6)$‐cage,它的阶等于我们的一个下界,则可以得到一个S(2,k,1+n(k−1))$S(2,k,1+n(k-1))$‐Steiner系统。此外,对于Steiner三重系统的特殊情况,我们完全解决了所有整数n≥4 $n\ge 4$的(3,n;6) $(3,n;6)$‐二部双正则笼阶的确定问题。考虑到周长大于6,我们将广义多边形(四边形、六边形和八边形)的存在性分别与(n+1,n2+1;8) $(n+1,{n}^{2}+1;8)$‐,(n2+1,n3+1;8) $({n}^{2}+1,{n}^{3}+1;8)$‐,(n,n+2;8) $(n,n+2;8)$‐,(n+1,n3+1;12) $(n+1,{n}^{3}+1;12)$‐和(n+1,n2+1;16) $(n+1,{n}^{2}+1;16)$‐两部双正笼的存在性联系起来。利用这一联系,我们也得到了周长为8、12、14的其他类二部双正则笼阶的改进上界。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
1.60
自引率
14.30%
发文量
55
审稿时长
>12 weeks
期刊介绍: The Journal of Combinatorial Designs is an international journal devoted to the timely publication of the most influential papers in the area of combinatorial design theory. All topics in design theory, and in which design theory has important applications, are covered, including: block designs, t-designs, pairwise balanced designs and group divisible designs Latin squares, quasigroups, and related algebras computational methods in design theory construction methods applications in computer science, experimental design theory, and coding theory graph decompositions, factorizations, and design-theoretic techniques in graph theory and extremal combinatorics finite geometry and its relation with design theory. algebraic aspects of design theory. Researchers and scientists can depend on the Journal of Combinatorial Designs for the most recent developments in this rapidly growing field, and to provide a forum for both theoretical research and applications. All papers appearing in the Journal of Combinatorial Designs are carefully peer refereed.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信