IoT Cyber-Attack Detection: A Comparative Analysis

IF 2.2 Q3 COMPUTER SCIENCE, INFORMATION SYSTEMS
Data Pub Date : 2021-04-05 DOI:10.1145/3460620.3460742
Abdul Hanan K. Mohammed, Hrag-Harout Jebamikyous, Dina Nawara, R. Kashef
{"title":"IoT Cyber-Attack Detection: A Comparative Analysis","authors":"Abdul Hanan K. Mohammed, Hrag-Harout Jebamikyous, Dina Nawara, R. Kashef","doi":"10.1145/3460620.3460742","DOIUrl":null,"url":null,"abstract":"A cyber-attack is precautious manipulation of computer systems and networks using malware to conciliate data or restrict processes or operations. These types of attacks are vastly growing over the years. This increase in structure and complexity calls for advanced innovation in defensive strategies and detection. Traditional approaches for detecting cyber-attacks suffer from low efficiency, especially with the high demands of increasing security threats. With the substitutional increase of computational power, machine learning and deep learning methods are considered significant solutions for defending and detecting those threats or attacks. In this paper, we performed a comparative analysis of IoT cyberattack detection methods. We utilized six different algorithms including, Random Forest, Logistic Regression, SVM, NB, KNN, and MLP. Each model is evaluated using precision, recall, F-score, and ROC.","PeriodicalId":36824,"journal":{"name":"Data","volume":"40 1","pages":""},"PeriodicalIF":2.2000,"publicationDate":"2021-04-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"9","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Data","FirstCategoryId":"90","ListUrlMain":"https://doi.org/10.1145/3460620.3460742","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"COMPUTER SCIENCE, INFORMATION SYSTEMS","Score":null,"Total":0}
引用次数: 9

Abstract

A cyber-attack is precautious manipulation of computer systems and networks using malware to conciliate data or restrict processes or operations. These types of attacks are vastly growing over the years. This increase in structure and complexity calls for advanced innovation in defensive strategies and detection. Traditional approaches for detecting cyber-attacks suffer from low efficiency, especially with the high demands of increasing security threats. With the substitutional increase of computational power, machine learning and deep learning methods are considered significant solutions for defending and detecting those threats or attacks. In this paper, we performed a comparative analysis of IoT cyberattack detection methods. We utilized six different algorithms including, Random Forest, Logistic Regression, SVM, NB, KNN, and MLP. Each model is evaluated using precision, recall, F-score, and ROC.
物联网网络攻击检测:比较分析
网络攻击是使用恶意软件对计算机系统和网络进行预防性操作,以协调数据或限制进程或操作。这些类型的攻击近年来急剧增加。这种结构和复杂性的增加要求在防御策略和检测方面进行先进的创新。传统的网络攻击检测方法存在效率低下的问题,尤其是在安全威胁日益增加的情况下。随着计算能力的替代性提高,机器学习和深度学习方法被认为是防御和检测这些威胁或攻击的重要解决方案。在本文中,我们对物联网网络攻击检测方法进行了对比分析。我们使用了六种不同的算法,包括随机森林、逻辑回归、支持向量机、NB、KNN和MLP。使用精度、召回率、f值和ROC对每个模型进行评估。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Data
Data Decision Sciences-Information Systems and Management
CiteScore
4.30
自引率
3.80%
发文量
0
审稿时长
10 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信