E. Naumovich, M. V. Patrakeev, A. Shaula, V. Kharton
{"title":"Ionic transport in anisotropic oxide lattices: In-depth analysis of molecular dynamics data and selected experimental results","authors":"E. Naumovich, M. V. Patrakeev, A. Shaula, V. Kharton","doi":"10.1109/OMEE.2012.6464766","DOIUrl":null,"url":null,"abstract":"The present work is focused on the analysis of oxygen migration processes in layered oxide materials, employing molecular dynamics (MD) simulations validated by various experimental results. In addition to standard MD approaches, a new technique was developed to explore anisotropic diffusion by analyzing transfer between special sites - ion trajectory nodes determined without using crystallographic information on the ideal anion positions. Applicability of this approach was demonstrated by the simulations of anisotropic oxygen transport in La2NiO4+δ.","PeriodicalId":6332,"journal":{"name":"2012 IEEE International Conference on Oxide Materials for Electronic Engineering (OMEE)","volume":"18 1","pages":"283-284"},"PeriodicalIF":0.0000,"publicationDate":"2012-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2012 IEEE International Conference on Oxide Materials for Electronic Engineering (OMEE)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/OMEE.2012.6464766","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
The present work is focused on the analysis of oxygen migration processes in layered oxide materials, employing molecular dynamics (MD) simulations validated by various experimental results. In addition to standard MD approaches, a new technique was developed to explore anisotropic diffusion by analyzing transfer between special sites - ion trajectory nodes determined without using crystallographic information on the ideal anion positions. Applicability of this approach was demonstrated by the simulations of anisotropic oxygen transport in La2NiO4+δ.