{"title":"Optimization model for remanufacturing in a real sawmill","authors":"L. Pradenas, Germán Bravo, R. Linfati","doi":"10.30495/JIEI.2020.678785","DOIUrl":null,"url":null,"abstract":"Sawmills are an important part of the forest supply chain, and as at any company, their production planning is highly complex. Planning in the remanufacturing area, in terms of its economic contribution to the sawmill and the supply chain, has not been studied in the scientific literature. The goal of this study was to develop and solve a mixed-integer linear programming model by employing an efficient allocation of cutting patterns on in-stock logs to maximize profits. To quantify the impact of an appropriate use of raw materials in the remanufacturing area in a sawmill, real and generated data were used. The model considers fixed and variable production costs, the availability of raw material, the capacity of the processes, the sale price of the products and the demand, for a process period of one month. The proposed compact mixed-integer linear programming model was solved using the commercial solver IBM ILGO CPLEX12.8. It was determined that the additional margin in USD earned in the remanufacturing area for the considered scenarios amounted to an average of 21.6%. The proposed method facilitates evaluating the economic contribution of remanufacturing while identifying bottlenecks and assessing proposed scenarios.","PeriodicalId":37850,"journal":{"name":"Journal of Industrial Engineering International","volume":"80 1","pages":"32-40"},"PeriodicalIF":0.0000,"publicationDate":"2020-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Industrial Engineering International","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.30495/JIEI.2020.678785","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"Engineering","Score":null,"Total":0}
引用次数: 2
Abstract
Sawmills are an important part of the forest supply chain, and as at any company, their production planning is highly complex. Planning in the remanufacturing area, in terms of its economic contribution to the sawmill and the supply chain, has not been studied in the scientific literature. The goal of this study was to develop and solve a mixed-integer linear programming model by employing an efficient allocation of cutting patterns on in-stock logs to maximize profits. To quantify the impact of an appropriate use of raw materials in the remanufacturing area in a sawmill, real and generated data were used. The model considers fixed and variable production costs, the availability of raw material, the capacity of the processes, the sale price of the products and the demand, for a process period of one month. The proposed compact mixed-integer linear programming model was solved using the commercial solver IBM ILGO CPLEX12.8. It was determined that the additional margin in USD earned in the remanufacturing area for the considered scenarios amounted to an average of 21.6%. The proposed method facilitates evaluating the economic contribution of remanufacturing while identifying bottlenecks and assessing proposed scenarios.
期刊介绍:
Journal of Industrial Engineering International is an international journal dedicated to the latest advancement of industrial engineering. The goal of this journal is to provide a platform for engineers and academicians all over the world to promote, share, and discuss various new issues and developments in different areas of industrial engineering. All manuscripts must be prepared in English and are subject to a rigorous and fair peer-review process. Accepted articles will immediately appear online. The journal publishes original research articles, review articles, technical notes, case studies and letters to the Editor, including but not limited to the following fields: Operations Research and Decision-Making Models, Production Planning and Inventory Control, Supply Chain Management, Quality Engineering, Applications of Fuzzy Theory in Industrial Engineering, Applications of Stochastic Models in Industrial Engineering, Applications of Metaheuristic Methods in Industrial Engineering.