Discharge recommendation based on a novel technique of homeostatic analysis.

IF 0.8 4区 心理学 Q3 PSYCHOLOGY, MULTIDISCIPLINARY
Estudios De Psicologia Pub Date : 2017-01-01 Epub Date: 2016-03-28 DOI:10.1093/jamia/ocw014
Jacob S Calvert, Daniel A Price, Christopher W Barton, Uli K Chettipally, Ritankar Das
{"title":"Discharge recommendation based on a novel technique of homeostatic analysis.","authors":"Jacob S Calvert, Daniel A Price, Christopher W Barton, Uli K Chettipally, Ritankar Das","doi":"10.1093/jamia/ocw014","DOIUrl":null,"url":null,"abstract":"<p><strong>Objective: </strong>We propose a computational framework for integrating diverse patient measurements into an aggregate health score and applying it to patient stability prediction.</p><p><strong>Materials and methods: </strong>We mapped retrospective patient data from the Multiparameter Intelligent Monitoring in Intensive Care (MIMIC) II clinical database into a discrete multidimensional space, which was searched for measurement combinations and trends relevant to patient outcomes of interest. Patient trajectories through this space were then used to make outcome predictions. As a case study, we built AutoTriage, a patient stability prediction tool to be used for discharge recommendation.</p><p><strong>Results: </strong>AutoTriage correctly identified 3 times as many stabilizing patients as existing tools and achieved an accuracy of 92.9% (95% CI: 91.6-93.9%), while maintaining 94.5% specificity. Analysis of AutoTriage parameters revealed that interdependencies between risk factors comprised the majority of each patient stability score.</p><p><strong>Discussion: </strong>AutoTriage demonstrated an improvement in the sensitivity of existing stability prediction tools, while considering patient safety upon discharge. The relative contributions of risk factors indicated that time-series trends and measurement interdependencies are most important to stability prediction.</p><p><strong>Conclusion: </strong>Our results motivate the application of multidimensional analysis to other clinical problems and highlight the importance of risk factor trends and interdependencies in outcome prediction.</p>","PeriodicalId":55642,"journal":{"name":"Estudios De Psicologia","volume":"38 1","pages":"24-29"},"PeriodicalIF":0.8000,"publicationDate":"2017-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7654071/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Estudios De Psicologia","FirstCategoryId":"91","ListUrlMain":"https://doi.org/10.1093/jamia/ocw014","RegionNum":4,"RegionCategory":"心理学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2016/3/28 0:00:00","PubModel":"Epub","JCR":"Q3","JCRName":"PSYCHOLOGY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

Objective: We propose a computational framework for integrating diverse patient measurements into an aggregate health score and applying it to patient stability prediction.

Materials and methods: We mapped retrospective patient data from the Multiparameter Intelligent Monitoring in Intensive Care (MIMIC) II clinical database into a discrete multidimensional space, which was searched for measurement combinations and trends relevant to patient outcomes of interest. Patient trajectories through this space were then used to make outcome predictions. As a case study, we built AutoTriage, a patient stability prediction tool to be used for discharge recommendation.

Results: AutoTriage correctly identified 3 times as many stabilizing patients as existing tools and achieved an accuracy of 92.9% (95% CI: 91.6-93.9%), while maintaining 94.5% specificity. Analysis of AutoTriage parameters revealed that interdependencies between risk factors comprised the majority of each patient stability score.

Discussion: AutoTriage demonstrated an improvement in the sensitivity of existing stability prediction tools, while considering patient safety upon discharge. The relative contributions of risk factors indicated that time-series trends and measurement interdependencies are most important to stability prediction.

Conclusion: Our results motivate the application of multidimensional analysis to other clinical problems and highlight the importance of risk factor trends and interdependencies in outcome prediction.

基于同态分析新技术的出院建议。
目的:我们提出了一个计算框架,用于将不同的患者测量结果整合到综合健康评分中,并将其应用于患者稳定性预测:我们提出了一个计算框架,用于将患者的各种测量数据整合到综合健康评分中,并将其应用于患者稳定性预测:我们将重症监护多参数智能监测(MIMIC)II 临床数据库中的患者回顾性数据映射到一个离散的多维空间,并在此空间中搜索与患者相关结果有关的测量组合和趋势。然后利用病人在该空间中的轨迹来预测结果。作为一项案例研究,我们建立了一个用于出院建议的病人稳定性预测工具 AutoTriage:结果:与现有工具相比,AutoTriage 能正确识别三倍数量的病情稳定患者,准确率达到 92.9%(95% CI:91.6-93.9%),同时保持 94.5% 的特异性。对AutoTriage参数的分析表明,风险因素之间的相互依存关系占每个患者稳定性评分的大部分:讨论:AutoTriage 提高了现有稳定性预测工具的灵敏度,同时考虑到了患者出院时的安全。风险因素的相对贡献表明,时间序列趋势和测量相互依存关系对稳定性预测最为重要:我们的研究结果推动了多维分析在其他临床问题中的应用,并强调了风险因素趋势和相互依存关系在结果预测中的重要性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Estudios De Psicologia
Estudios De Psicologia PSYCHOLOGY, MULTIDISCIPLINARY-
CiteScore
1.40
自引率
0.00%
发文量
16
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信