The algebraic significance of weak excluded middle laws

Pub Date : 2022-01-29 DOI:10.1002/malq.202100046
Tomáš Lávička, Tommaso Moraschini, James G. Raftery
{"title":"The algebraic significance of weak excluded middle laws","authors":"Tomáš Lávička,&nbsp;Tommaso Moraschini,&nbsp;James G. Raftery","doi":"10.1002/malq.202100046","DOIUrl":null,"url":null,"abstract":"<p>For (finitary) deductive systems, we formulate a signature-independent abstraction of the <i>weak excluded middle law</i> (WEML), which strengthens the existing general notion of an inconsistency lemma (IL). Of special interest is the case where a quasivariety <math>\n <semantics>\n <mi>K</mi>\n <annotation>$\\mathsf {K}$</annotation>\n </semantics></math> algebraizes a deductive system ⊢. We prove that, in this case, if ⊢ has a WEML (in the general sense) then every relatively subdirectly irreducible member of <math>\n <semantics>\n <mi>K</mi>\n <annotation>$\\mathsf {K}$</annotation>\n </semantics></math> has a greatest proper <math>\n <semantics>\n <mi>K</mi>\n <annotation>$\\mathsf {K}$</annotation>\n </semantics></math>-congruence; the converse holds if ⊢ has an inconsistency lemma. The result extends, in a suitable form, to all protoalgebraic logics. A super-intuitionistic logic possesses a WEML iff it extends <math>\n <semantics>\n <mi>KC</mi>\n <annotation>$\\mathsf {KC}$</annotation>\n </semantics></math>. We characterize the IL and the WEML for normal modal logics and for relevance logics. A normal extension of <math>\n <semantics>\n <mrow>\n <mi>S</mi>\n <mn>4</mn>\n </mrow>\n <annotation>$\\mathsf {S4}$</annotation>\n </semantics></math> has a global consequence relation with a WEML iff it extends <math>\n <semantics>\n <mrow>\n <mi>S</mi>\n <mn>4</mn>\n <mo>.</mo>\n <mn>2</mn>\n </mrow>\n <annotation>$\\mathsf {S4.2}$</annotation>\n </semantics></math>, while every axiomatic extension of <math>\n <semantics>\n <msup>\n <mi>R</mi>\n <mi>t</mi>\n </msup>\n <annotation>$\\mathsf {R^t}$</annotation>\n </semantics></math> with an IL has a WEML.</p>","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2022-01-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"100","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/malq.202100046","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

Abstract

For (finitary) deductive systems, we formulate a signature-independent abstraction of the weak excluded middle law (WEML), which strengthens the existing general notion of an inconsistency lemma (IL). Of special interest is the case where a quasivariety K $\mathsf {K}$ algebraizes a deductive system ⊢. We prove that, in this case, if ⊢ has a WEML (in the general sense) then every relatively subdirectly irreducible member of K $\mathsf {K}$ has a greatest proper K $\mathsf {K}$ -congruence; the converse holds if ⊢ has an inconsistency lemma. The result extends, in a suitable form, to all protoalgebraic logics. A super-intuitionistic logic possesses a WEML iff it extends KC $\mathsf {KC}$ . We characterize the IL and the WEML for normal modal logics and for relevance logics. A normal extension of S 4 $\mathsf {S4}$ has a global consequence relation with a WEML iff it extends S 4 . 2 $\mathsf {S4.2}$ , while every axiomatic extension of R t $\mathsf {R^t}$ with an IL has a WEML.

分享
查看原文
弱排除中间律的代数意义
对于(有限)演绎系统,我们给出了弱排除中间律(WEML)的一个与签名无关的抽象,强化了现有的不一致引理(IL)的一般概念。特别有趣的是拟变量K $\mathsf {K}$对演绎系统进行代数化的情况。我们证明,在这种情况下,如果_有一个WEML(在一般意义上),则K $\mathsf {K}$中每一个相对子直接不可约的元素都有一个最大固有K $\mathsf {K}$ -同余;如果∧有不一致引理,则反之成立。该结果以适当的形式推广到所有的原代数逻辑。如果超直觉逻辑扩展了KC $\mathsf {KC}$,则具有WEML。我们描述了正常模态逻辑和相关逻辑的IL和WEML。S4 $\mathsf {S4}$的普通扩展如果扩展S4,则与WEML具有全局推论关系。2 $\mathsf {S4.2}$,而rt $\mathsf {R^t}$的每一个具有IL的公理扩展都有一个WEML。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信