Simple Approximations for Fast and Secure Deep Learning on Genomic Data

Delica S. Leboe-McGowan, Md Momin Al Aziz, N. Mohammed
{"title":"Simple Approximations for Fast and Secure Deep Learning on Genomic Data","authors":"Delica S. Leboe-McGowan, Md Momin Al Aziz, N. Mohammed","doi":"10.1109/IEMCON51383.2020.9284891","DOIUrl":null,"url":null,"abstract":"State-of-the-art frameworks for privacy-preserving artificial neural networks often rely on secret sharing to protect sensitive data. Unfortunately, operating on secret shared data complicates a number of non-linear functions that are central to deep learning, such as batch normalization and rectified linear units (ReLUs). We offer simple procedures for approximating these non-linear operations. The approximations we propose significantly reduce the training runtime of a privacy-preserving convolutional neural network (CNN) that we designed to diagnose breast cancer from secret shared gene expression profiles. In just over five minutes of training, our approximation-based privacy-preserving CNN achieves an average test accuracy of 96%. When we apply an exact garbled circuit solution for the ReLU function, we find that the privacy-preserving model requires days of computation to achieve the same level of accuracy. The dramatic improvement in training runtime yielded by our ReLU approximation may prove useful for other medical applications of privacy-preserving neural networks.","PeriodicalId":6871,"journal":{"name":"2020 11th IEEE Annual Information Technology, Electronics and Mobile Communication Conference (IEMCON)","volume":"41 1","pages":"0860-0866"},"PeriodicalIF":0.0000,"publicationDate":"2020-11-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2020 11th IEEE Annual Information Technology, Electronics and Mobile Communication Conference (IEMCON)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IEMCON51383.2020.9284891","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

State-of-the-art frameworks for privacy-preserving artificial neural networks often rely on secret sharing to protect sensitive data. Unfortunately, operating on secret shared data complicates a number of non-linear functions that are central to deep learning, such as batch normalization and rectified linear units (ReLUs). We offer simple procedures for approximating these non-linear operations. The approximations we propose significantly reduce the training runtime of a privacy-preserving convolutional neural network (CNN) that we designed to diagnose breast cancer from secret shared gene expression profiles. In just over five minutes of training, our approximation-based privacy-preserving CNN achieves an average test accuracy of 96%. When we apply an exact garbled circuit solution for the ReLU function, we find that the privacy-preserving model requires days of computation to achieve the same level of accuracy. The dramatic improvement in training runtime yielded by our ReLU approximation may prove useful for other medical applications of privacy-preserving neural networks.
基因组数据快速安全深度学习的简单近似
最先进的保护隐私的人工神经网络框架通常依赖于秘密共享来保护敏感数据。不幸的是,对秘密共享数据的操作使许多非线性函数复杂化,这些函数是深度学习的核心,例如批处理归一化和校正线性单元(relu)。我们提供了近似这些非线性操作的简单程序。我们提出的近似方法显著减少了我们设计的用于从秘密共享基因表达谱诊断乳腺癌的隐私保护卷积神经网络(CNN)的训练运行时间。在短短五分钟的训练中,我们基于近似的隐私保护CNN达到了96%的平均测试准确率。当我们对ReLU函数应用精确的乱码电路解决方案时,我们发现隐私保护模型需要数天的计算才能达到相同的精度水平。我们的ReLU近似产生的训练运行时间的显着改进可能对隐私保护神经网络的其他医疗应用有用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信