Structure, Topology, Vibrational Frequency, Frontier Molecular Orbital Gaps, Stability, Charge, NICS, and Conductivity of Non-segregated Silicon Heterofullerenes: A DFT Approach
{"title":"Structure, Topology, Vibrational Frequency, Frontier Molecular Orbital Gaps, Stability, Charge, NICS, and Conductivity of Non-segregated Silicon Heterofullerenes: A DFT Approach","authors":"Somayeh Soleimam-Amin, M. Koohi","doi":"10.1109/3M-NANO.2018.8552174","DOIUrl":null,"url":null,"abstract":"Silicon doped heterofullerenes of C20, I-VIII, are compared and contrasted by density functional theory (DFT) calculations. All studied species are known as true minima by vibrational frequency analysis. Heterofullerenes included alternating heteroatoms in equatorial position are introduced as stable highly-doped heterofullerenes due to lack of weak silicon―silicon single bonds. No deformation was seen for eight isolated heterofullerenes and all are the isolated-pentagon fullerenic cage. The species of II with the most negative NICS, as well as the highest band gap and binding energy is distinguished as the most thermodynamically, kinetically and chemically stable heterofullerene. The calculated structure of C18Si2 (II) with C1 symmetry is included two silicon atoms in equatorial position. Heterofullerenes especially VIII with the most negative charges on carbon atoms and the most positive charges on silicon heteroatoms (3 to 5.6 times in relation to other species), display the points with different charges that make big charge transfer on the surface of them. That make it as an excellent volunteer for hydrogen storage. These computational results promote chemists to have more experimental verifications.","PeriodicalId":6583,"journal":{"name":"2018 IEEE International Conference on Manipulation, Manufacturing and Measurement on the Nanoscale (3M-NANO)","volume":"34 1","pages":"51-54"},"PeriodicalIF":0.0000,"publicationDate":"2018-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2018 IEEE International Conference on Manipulation, Manufacturing and Measurement on the Nanoscale (3M-NANO)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/3M-NANO.2018.8552174","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1
Abstract
Silicon doped heterofullerenes of C20, I-VIII, are compared and contrasted by density functional theory (DFT) calculations. All studied species are known as true minima by vibrational frequency analysis. Heterofullerenes included alternating heteroatoms in equatorial position are introduced as stable highly-doped heterofullerenes due to lack of weak silicon―silicon single bonds. No deformation was seen for eight isolated heterofullerenes and all are the isolated-pentagon fullerenic cage. The species of II with the most negative NICS, as well as the highest band gap and binding energy is distinguished as the most thermodynamically, kinetically and chemically stable heterofullerene. The calculated structure of C18Si2 (II) with C1 symmetry is included two silicon atoms in equatorial position. Heterofullerenes especially VIII with the most negative charges on carbon atoms and the most positive charges on silicon heteroatoms (3 to 5.6 times in relation to other species), display the points with different charges that make big charge transfer on the surface of them. That make it as an excellent volunteer for hydrogen storage. These computational results promote chemists to have more experimental verifications.