Yang Li, Runxin Fang, Ren-cheng Wang, Qiming Dai, Zhiyong Li, G. Ma
{"title":"Impact of Coronary Artery Curvature on the Longitudinal Stent Foreshortening: Real-World Observations","authors":"Yang Li, Runxin Fang, Ren-cheng Wang, Qiming Dai, Zhiyong Li, G. Ma","doi":"10.32604/mcb.2021.017503","DOIUrl":null,"url":null,"abstract":"Longitudinal stent foreshortening is a known phenomenon, however, the impact of coronary artery curvature on longitudinal stent foreshortening remains unclear. The aim of this study is to determine the impact of coronary artery curvature on the longitudinal stent foreshortening in the real-world scenarios. A total of 86 consecutive patients underwent coronary stent implantation were included in the present study. The degree of coronary artery curvature was defined as the length of the coronary artery curvature divided by the straight length. Longitudinal stent foreshortening was defined as the stent length after implantation divided by the stent length before implantation. The mean longitudinal foreshortening rate of coronary stents was about 94% in curved coronary arteries. Longitudinal stent foreshortening rate was positively correlated with the degree of coronary artery curvature (r = –0.86, P < 0.01). Coronary artery curvature is associated with significant longitudinal foreshortening of coronary stents, thus longitudinal foreshortening should be considered on deciding the stent length in curved coronary artery and a longer stent is usually needed in curved coronary artery.","PeriodicalId":48719,"journal":{"name":"Molecular & Cellular Biomechanics","volume":"16 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2021-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Molecular & Cellular Biomechanics","FirstCategoryId":"1087","ListUrlMain":"https://doi.org/10.32604/mcb.2021.017503","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"Biochemistry, Genetics and Molecular Biology","Score":null,"Total":0}
引用次数: 0
Abstract
Longitudinal stent foreshortening is a known phenomenon, however, the impact of coronary artery curvature on longitudinal stent foreshortening remains unclear. The aim of this study is to determine the impact of coronary artery curvature on the longitudinal stent foreshortening in the real-world scenarios. A total of 86 consecutive patients underwent coronary stent implantation were included in the present study. The degree of coronary artery curvature was defined as the length of the coronary artery curvature divided by the straight length. Longitudinal stent foreshortening was defined as the stent length after implantation divided by the stent length before implantation. The mean longitudinal foreshortening rate of coronary stents was about 94% in curved coronary arteries. Longitudinal stent foreshortening rate was positively correlated with the degree of coronary artery curvature (r = –0.86, P < 0.01). Coronary artery curvature is associated with significant longitudinal foreshortening of coronary stents, thus longitudinal foreshortening should be considered on deciding the stent length in curved coronary artery and a longer stent is usually needed in curved coronary artery.
期刊介绍:
The field of biomechanics concerns with motion, deformation, and forces in biological systems. With the explosive progress in molecular biology, genomic engineering, bioimaging, and nanotechnology, there will be an ever-increasing generation of knowledge and information concerning the mechanobiology of genes, proteins, cells, tissues, and organs. Such information will bring new diagnostic tools, new therapeutic approaches, and new knowledge on ourselves and our interactions with our environment. It becomes apparent that biomechanics focusing on molecules, cells as well as tissues and organs is an important aspect of modern biomedical sciences. The aims of this journal are to facilitate the studies of the mechanics of biomolecules (including proteins, genes, cytoskeletons, etc.), cells (and their interactions with extracellular matrix), tissues and organs, the development of relevant advanced mathematical methods, and the discovery of biological secrets. As science concerns only with relative truth, we seek ideas that are state-of-the-art, which may be controversial, but stimulate and promote new ideas, new techniques, and new applications.