DNA Methylation Dynamics During Early Human Development

Hiroaki Okae, T. Arima
{"title":"DNA Methylation Dynamics During Early Human Development","authors":"Hiroaki Okae, T. Arima","doi":"10.1274/jmor.33.101","DOIUrl":null,"url":null,"abstract":"Abstract: \n DNA methylation is essential for normal mammalian development and plays critical roles in various biological processes, including genomic imprinting, X-chromosome inactivation and repression of transposable elements. Although DNA methylation patterns are relatively stable in somatic cells, global reprogramming of DNA methylation occurs during mammalian preimplantation development. Advances in DNA methylation profiling techniques have been revealing the DNA methylation dynamics in mammalian embryos. Recently, we and other groups reported genome-scale DNA methylation analyses of human oocytes and preimplantation embryos, highlighting both the similarities and differences in the DNA methylation dynamics between humans and mice. In this review, we introduce the current knowledge of DNA methylation dynamics during early mammalian development. We also discuss the possibility of the application of genome-scale DNA methylation analysis techniques to human gametes and embryos for diagnostic purposes.","PeriodicalId":90599,"journal":{"name":"Journal of mammalian ova research","volume":"31 1","pages":"101 - 107"},"PeriodicalIF":0.0000,"publicationDate":"2016-10-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of mammalian ova research","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1274/jmor.33.101","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 5

Abstract

Abstract: DNA methylation is essential for normal mammalian development and plays critical roles in various biological processes, including genomic imprinting, X-chromosome inactivation and repression of transposable elements. Although DNA methylation patterns are relatively stable in somatic cells, global reprogramming of DNA methylation occurs during mammalian preimplantation development. Advances in DNA methylation profiling techniques have been revealing the DNA methylation dynamics in mammalian embryos. Recently, we and other groups reported genome-scale DNA methylation analyses of human oocytes and preimplantation embryos, highlighting both the similarities and differences in the DNA methylation dynamics between humans and mice. In this review, we introduce the current knowledge of DNA methylation dynamics during early mammalian development. We also discuss the possibility of the application of genome-scale DNA methylation analysis techniques to human gametes and embryos for diagnostic purposes.
早期人类发育过程中的DNA甲基化动力学
摘要:DNA甲基化对哺乳动物的正常发育至关重要,并在基因组印迹、x染色体失活和转座因子抑制等多种生物学过程中发挥着重要作用。虽然DNA甲基化模式在体细胞中相对稳定,但在哺乳动物着床前发育过程中,DNA甲基化的全局重编程发生。DNA甲基化分析技术的进步揭示了哺乳动物胚胎DNA甲基化动力学。最近,我们和其他研究小组报道了人类卵母细胞和植入前胚胎的基因组尺度DNA甲基化分析,强调了人类和小鼠之间DNA甲基化动力学的相似性和差异性。本文综述了哺乳动物早期发育过程中DNA甲基化动力学的最新研究进展。我们还讨论了基因组尺度DNA甲基化分析技术应用于人类配子和胚胎诊断的可能性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信