{"title":"Effective aero-optical suppression by steady wall blowing and wall suction schemes for supersonic turbulent boundary layer","authors":"H. Zou, X. Yang, X.-W. Sun, W. Liu, Q. Yang","doi":"10.1017/aer.2022.84","DOIUrl":null,"url":null,"abstract":"\n As a basic flow model for engineering applications, wall-bounded turbulent flow has been widely studied in the field of aero-optics, but the flow control methods that could effectively suppress aero-optical effects are relatively rare. As an urgent requirement in engineering application, the concept of the steady wall blowing and suction is proposed by the author. Firstly, the author briefly described the flow model and physical method. Secondly, the choice of disturbance type is given. Then, the results of wall blowing-suction, suction and blowing ways based on steady and unsteady disturbance are compared. Finally, it is concluded that employing the high steady wall blowing disturbance (A = 0.2) could realise aero-optical suppression by around 20%. Besides, the steady wall suction scheme contributes to about 70%–80% reduction effect within a wide amplitude range (A = 0.2–1.0), which suppresses this effect by maintaining laminar state downstream contrasted by the baseline case.","PeriodicalId":22567,"journal":{"name":"The Aeronautical Journal (1968)","volume":"25 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2022-11-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"The Aeronautical Journal (1968)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1017/aer.2022.84","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1
Abstract
As a basic flow model for engineering applications, wall-bounded turbulent flow has been widely studied in the field of aero-optics, but the flow control methods that could effectively suppress aero-optical effects are relatively rare. As an urgent requirement in engineering application, the concept of the steady wall blowing and suction is proposed by the author. Firstly, the author briefly described the flow model and physical method. Secondly, the choice of disturbance type is given. Then, the results of wall blowing-suction, suction and blowing ways based on steady and unsteady disturbance are compared. Finally, it is concluded that employing the high steady wall blowing disturbance (A = 0.2) could realise aero-optical suppression by around 20%. Besides, the steady wall suction scheme contributes to about 70%–80% reduction effect within a wide amplitude range (A = 0.2–1.0), which suppresses this effect by maintaining laminar state downstream contrasted by the baseline case.