Simple Parallel and Distributed Algorithms for Spectral Graph Sparsification

IF 0.9 Q3 COMPUTER SCIENCE, THEORY & METHODS
I. Koutis, S. Xu
{"title":"Simple Parallel and Distributed Algorithms for Spectral Graph Sparsification","authors":"I. Koutis, S. Xu","doi":"10.1145/2948062","DOIUrl":null,"url":null,"abstract":"We describe simple algorithms for spectral graph sparsification, based on iterative computations of weighted spanners and sampling. Leveraging the algorithms of Baswana and Sen for computing spanners, we obtain the first distributed spectral sparsification algorithm in the CONGEST model. We also obtain a parallel algorithm with improved work and time guarantees, as well as other natural distributed implementations. Combining this algorithm with the parallel framework of Peng and Spielman for solving symmetric diagonally dominant linear systems, we get a parallel solver that is significantly more efficient in terms of the total work.","PeriodicalId":42115,"journal":{"name":"ACM Transactions on Parallel Computing","volume":"18 1","pages":"14:1-14:14"},"PeriodicalIF":0.9000,"publicationDate":"2014-02-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"44","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACM Transactions on Parallel Computing","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/2948062","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"COMPUTER SCIENCE, THEORY & METHODS","Score":null,"Total":0}
引用次数: 44

Abstract

We describe simple algorithms for spectral graph sparsification, based on iterative computations of weighted spanners and sampling. Leveraging the algorithms of Baswana and Sen for computing spanners, we obtain the first distributed spectral sparsification algorithm in the CONGEST model. We also obtain a parallel algorithm with improved work and time guarantees, as well as other natural distributed implementations. Combining this algorithm with the parallel framework of Peng and Spielman for solving symmetric diagonally dominant linear systems, we get a parallel solver that is significantly more efficient in terms of the total work.
谱图稀疏化的简单并行和分布式算法
我们描述了基于加权扳手和采样迭代计算的谱图稀疏化的简单算法。利用Baswana和Sen计算扳手的算法,我们在CONGEST模型中获得了第一个分布式频谱稀疏算法。我们还获得了一种改进的工作和时间保证的并行算法,以及其他自然的分布式实现。将该算法与Peng和Spielman用于求解对称对角占优线性系统的并行框架相结合,我们得到了一个在总工作方面效率显著提高的并行求解器。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
ACM Transactions on Parallel Computing
ACM Transactions on Parallel Computing COMPUTER SCIENCE, THEORY & METHODS-
CiteScore
4.10
自引率
0.00%
发文量
16
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信