D. Sharma, M. Singh, Gabriela Krist, M. Velayudhan Nair
{"title":"Pigment Analysis of Palm Leaf Manuscripts of India","authors":"D. Sharma, M. Singh, Gabriela Krist, M. Velayudhan Nair","doi":"10.18520/cs/v118/i2/285-292","DOIUrl":null,"url":null,"abstract":"CURRENT SCIENCE, VOL. 118, NO. 2, 25 JANUARY 2020 285 *For correspondence. (e-mail: sharmadeepakshi1@gmail.com) 8. Malyoth, G. and Bauer, A., Observations on Bacterium bifidum. Z. Kinderhelikd., 1950, 68(4), 358. 9. Culpepper, T. et al., Bifidobacterium bifidum R0071 decreases stress associated diarrhoea-related symptoms and self-reported stress: a secondary analysis of a randomised trial. Benef. Microbes, 2016, 7(3), 327–336. 10. Saarela, M., Mogensen, G., Fonden, R., Mättö, J. and MattilaSandholm, T., Probiotic bacteria: safety, functional and technological properties. J. Biotechnol., 2000, 84(3), 197–215. 11. Siaterlis, A., Deepika, G. and Charalampopoulos, D., Effect of culture medium and cryoprotectants on the growth and survival of probiotic lactobacilli during freeze drying. Lett. Appl. Microbiol., 2009, 48, 295–301. 12. Veda, M. O., Nakamoto, S., Nakai, R. and Takagi, A., Establishment of a defined minimal medium and isolation of auxotrophic mutants for Bifidobacterium bifidum ES 5. J. Gen. Appl. Microbiol., 1983, 29(2), 103–114. 13. Gaden Jr, E. L., Fermentation process kinetics. Biotechnol. Bioeng., 2000, 67(6), 629–635. 14. Corre, C., Madec, M. N. and Boyaval, P., Production of concentrated Bifidobacterium bifidum. J. Chem. Technol. Biotechnol., 1992, 53(2), 189–194. 15. De Man, J. C., Rogosa, M. and Sharpe, M. E., A medium for the cultivation of lactobacilli. J. Appl. Bacteriol., 1960, 23, 130–135. 16. Vinderola, C. G. and Reinheimer, J. A., Culture media for the enumeration of Bifidobacterium bifidum and Lactobacillus acidophilus in the presence of yoghurt bacteria. Int. Dairy J., 1999, 9(8), 497–505. 17. Coghetto, C. C., Brinques, G. B., Siqueira, N. M., Pletsch, J., Soares, R. M. and Ayub, M. A., Electrospraying microencapsulation of Lactobacillus plantarum enhances cell viability under refrigeration storage and simulated gastric and intestinal fluids. J. Funct. Foods, 2016, 24, 316–326. 18. Meena, G. S., Gupta, S., Majumdar, G. C. and Banerjee, R., Growth characteristics modeling of Bifidobacterium bifidum using RSM and ANN. Braz. Arch. Biol. Technol., 2011, 54(6), 1357– 1366. 19. Dinakar, P. and Mistry, V. V., Growth and viability of Bifidobacterium bifidum in cheddar cheese. J. Dairy Sci., 1994, 77(10), 2854–2864. 20. Hekmat, S., Survival of Lactobacillus acidophilus and Bifidobacterium bifidum in ice cream for use as a probiotic food. J. Dairy Sci., 1992, 6, 1415–1422. 21. Kulkarni, S., Haq, S. F., Samant, S. and Sukumaran, S., Adaptation of Lactobacillus acidophilus to thermal stress yields a thermotolerant variant which also exhibits improved survival at pH 2. Probiot. Antimicrob. Proteins, 2018, 10(4), 717–727. 22. Hwang, C. F., Lin, C. K., Yan, S. Y., Chang, R. H. and Tsen, H. Y., Enhancement of biomass production and nutrition utilization by strain Lactobacillus acidophilus DGK derived from serial subculturing in an aerobic environment. Afr. J. Biotechnol., 2015, 14(3), 248–256. 23. Ram, C. and Chander, H., Optimization of culture conditions of probiotic bifidobacteria for maximal adhesion to hexadecane. World J. Microbiol. Biotechnol., 2003, 19(4), 407–410. 24. Mlobeli, N. T., Batch culture studies of Bifidobacterium bifidum: a thesis presented in partial fulfilment of the requirements for the degree of Master of Technology in Biotechnology and Bioprocess Engineering, Doctoral dissertation, Massey University, 1996. 25. Kwon, S. G., Son, J. W., Kim, H. J., Park, C. S., Lee, J. K., Ji, G. E. and Oh, D. K., High concentration cultivation of Bifidobacterium bifidum in a submerged membrane bioreactor. Biotechnol. Prog., 2006, 22(6), 1591–1597.","PeriodicalId":11194,"journal":{"name":"Current Science","volume":"27 1","pages":""},"PeriodicalIF":1.0000,"publicationDate":"2020-01-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Current Science","FirstCategoryId":"103","ListUrlMain":"https://doi.org/10.18520/cs/v118/i2/285-292","RegionNum":4,"RegionCategory":"综合性期刊","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MULTIDISCIPLINARY SCIENCES","Score":null,"Total":0}
引用次数: 1
Abstract
CURRENT SCIENCE, VOL. 118, NO. 2, 25 JANUARY 2020 285 *For correspondence. (e-mail: sharmadeepakshi1@gmail.com) 8. Malyoth, G. and Bauer, A., Observations on Bacterium bifidum. Z. Kinderhelikd., 1950, 68(4), 358. 9. Culpepper, T. et al., Bifidobacterium bifidum R0071 decreases stress associated diarrhoea-related symptoms and self-reported stress: a secondary analysis of a randomised trial. Benef. Microbes, 2016, 7(3), 327–336. 10. Saarela, M., Mogensen, G., Fonden, R., Mättö, J. and MattilaSandholm, T., Probiotic bacteria: safety, functional and technological properties. J. Biotechnol., 2000, 84(3), 197–215. 11. Siaterlis, A., Deepika, G. and Charalampopoulos, D., Effect of culture medium and cryoprotectants on the growth and survival of probiotic lactobacilli during freeze drying. Lett. Appl. Microbiol., 2009, 48, 295–301. 12. Veda, M. O., Nakamoto, S., Nakai, R. and Takagi, A., Establishment of a defined minimal medium and isolation of auxotrophic mutants for Bifidobacterium bifidum ES 5. J. Gen. Appl. Microbiol., 1983, 29(2), 103–114. 13. Gaden Jr, E. L., Fermentation process kinetics. Biotechnol. Bioeng., 2000, 67(6), 629–635. 14. Corre, C., Madec, M. N. and Boyaval, P., Production of concentrated Bifidobacterium bifidum. J. Chem. Technol. Biotechnol., 1992, 53(2), 189–194. 15. De Man, J. C., Rogosa, M. and Sharpe, M. E., A medium for the cultivation of lactobacilli. J. Appl. Bacteriol., 1960, 23, 130–135. 16. Vinderola, C. G. and Reinheimer, J. A., Culture media for the enumeration of Bifidobacterium bifidum and Lactobacillus acidophilus in the presence of yoghurt bacteria. Int. Dairy J., 1999, 9(8), 497–505. 17. Coghetto, C. C., Brinques, G. B., Siqueira, N. M., Pletsch, J., Soares, R. M. and Ayub, M. A., Electrospraying microencapsulation of Lactobacillus plantarum enhances cell viability under refrigeration storage and simulated gastric and intestinal fluids. J. Funct. Foods, 2016, 24, 316–326. 18. Meena, G. S., Gupta, S., Majumdar, G. C. and Banerjee, R., Growth characteristics modeling of Bifidobacterium bifidum using RSM and ANN. Braz. Arch. Biol. Technol., 2011, 54(6), 1357– 1366. 19. Dinakar, P. and Mistry, V. V., Growth and viability of Bifidobacterium bifidum in cheddar cheese. J. Dairy Sci., 1994, 77(10), 2854–2864. 20. Hekmat, S., Survival of Lactobacillus acidophilus and Bifidobacterium bifidum in ice cream for use as a probiotic food. J. Dairy Sci., 1992, 6, 1415–1422. 21. Kulkarni, S., Haq, S. F., Samant, S. and Sukumaran, S., Adaptation of Lactobacillus acidophilus to thermal stress yields a thermotolerant variant which also exhibits improved survival at pH 2. Probiot. Antimicrob. Proteins, 2018, 10(4), 717–727. 22. Hwang, C. F., Lin, C. K., Yan, S. Y., Chang, R. H. and Tsen, H. Y., Enhancement of biomass production and nutrition utilization by strain Lactobacillus acidophilus DGK derived from serial subculturing in an aerobic environment. Afr. J. Biotechnol., 2015, 14(3), 248–256. 23. Ram, C. and Chander, H., Optimization of culture conditions of probiotic bifidobacteria for maximal adhesion to hexadecane. World J. Microbiol. Biotechnol., 2003, 19(4), 407–410. 24. Mlobeli, N. T., Batch culture studies of Bifidobacterium bifidum: a thesis presented in partial fulfilment of the requirements for the degree of Master of Technology in Biotechnology and Bioprocess Engineering, Doctoral dissertation, Massey University, 1996. 25. Kwon, S. G., Son, J. W., Kim, H. J., Park, C. S., Lee, J. K., Ji, G. E. and Oh, D. K., High concentration cultivation of Bifidobacterium bifidum in a submerged membrane bioreactor. Biotechnol. Prog., 2006, 22(6), 1591–1597.
期刊介绍:
Current Science, published every fortnight by the Association, in collaboration with the Indian Academy of Sciences, is the leading interdisciplinary science journal from India. It was started in 1932 by the then stalwarts of Indian science such as CV Raman, Birbal Sahni, Meghnad Saha, Martin Foster and S.S. Bhatnagar. In 2011, the journal completed one hundred volumes. The journal is intended as a medium for communication and discussion of important issues that concern science and scientific activities. Besides full length research articles and shorter research communications, the journal publishes review articles, scientific correspondence and commentaries, news and views, comments on recently published research papers, opinions on scientific activity, articles on universities, Indian laboratories and institutions, interviews with scientists, personal information, book reviews, etc. It is also a forum to discuss issues and problems faced by science and scientists and an effective medium of interaction among scientists in the country and abroad. Current Science is read by a large community of scientists and the circulation has been continuously going up.
Current Science publishes special sections on diverse and topical themes of interest and this has served as a platform for the scientific fraternity to get their work acknowledged and highlighted. Some of the special sections that have been well received in the recent past include remote sensing, waves and symmetry, seismology in India, nanomaterials, AIDS, Alzheimer''s disease, molecular biology of ageing, cancer, cardiovascular diseases, Indian monsoon, water, transport, and mountain weather forecasting in India, to name a few. Contributions to these special issues ‘which receive widespread attention’ are from leading scientists in India and abroad.