Real-Time Particle Spectrometry in Liquid Environment Using Microfluidic-Nanomechanical Resonators

A. Martín-Pérez, D. Ramos, J. Tamayo, M. Calleja
{"title":"Real-Time Particle Spectrometry in Liquid Environment Using Microfluidic-Nanomechanical Resonators","authors":"A. Martín-Pérez, D. Ramos, J. Tamayo, M. Calleja","doi":"10.1109/TRANSDUCERS.2019.8808536","DOIUrl":null,"url":null,"abstract":"Hollow nanomechanical resonators represent a promising technique for particle spectrometry, as their design allows highly sensitive particle mass sensing in liquid environments by putting together the good mechanical behavior of a nanomechanical resonator vibrating in vacuum or gas environment with physiological compatibility of liquid environments for biological applications. Nevertheless, for real-world practical applications these sensors require not only a high mass sensitivity but also a high-throughput particle flow. In this work, we use a fast-response and low-cost hollow nanomechanical resonator which let us measure up to 10 particles per second. However, this unprecedented particle velocities brings new implications related to the entanglement between the mechanics and the microfluidics in this structure. We realized that the measured particle masses depend on the fluid velocity. The study of this phenomenon demonstrates the need to introduce a correction factor in mass sensing dependent on particle velocity.","PeriodicalId":6672,"journal":{"name":"2019 20th International Conference on Solid-State Sensors, Actuators and Microsystems & Eurosensors XXXIII (TRANSDUCERS & EUROSENSORS XXXIII)","volume":"20 1","pages":"2146-2149"},"PeriodicalIF":0.0000,"publicationDate":"2019-06-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2019 20th International Conference on Solid-State Sensors, Actuators and Microsystems & Eurosensors XXXIII (TRANSDUCERS & EUROSENSORS XXXIII)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/TRANSDUCERS.2019.8808536","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4

Abstract

Hollow nanomechanical resonators represent a promising technique for particle spectrometry, as their design allows highly sensitive particle mass sensing in liquid environments by putting together the good mechanical behavior of a nanomechanical resonator vibrating in vacuum or gas environment with physiological compatibility of liquid environments for biological applications. Nevertheless, for real-world practical applications these sensors require not only a high mass sensitivity but also a high-throughput particle flow. In this work, we use a fast-response and low-cost hollow nanomechanical resonator which let us measure up to 10 particles per second. However, this unprecedented particle velocities brings new implications related to the entanglement between the mechanics and the microfluidics in this structure. We realized that the measured particle masses depend on the fluid velocity. The study of this phenomenon demonstrates the need to introduce a correction factor in mass sensing dependent on particle velocity.
微流体-纳米机械谐振器在液体环境中的实时粒子光谱分析
空心纳米机械谐振器代表了一种很有前途的粒子光谱技术,因为它们的设计允许在液体环境中高度敏感的粒子质量传感,通过将纳米机械谐振器在真空或气体环境中振动的良好机械行为与生物应用的液体环境的生理兼容性结合在一起。然而,对于现实世界的实际应用,这些传感器不仅需要高质量灵敏度,还需要高通量粒子流。在这项工作中,我们使用了一种快速响应和低成本的空心纳米机械谐振器,它可以让我们每秒测量多达10个粒子。然而,这种前所未有的粒子速度给这种结构中力学和微流体之间的纠缠带来了新的含义。我们意识到测量的粒子质量依赖于流体速度。对这一现象的研究表明,需要在质量传感中引入一个依赖于粒子速度的校正因子。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信