Synthesis of Titanium-Based Composites by Pulsed Methods

IF 0.4 Q4 NANOSCIENCE & NANOTECHNOLOGY
A. Kaygorodov, Sergey Vladimirovich Zayats
{"title":"Synthesis of Titanium-Based Composites by Pulsed Methods","authors":"A. Kaygorodov, Sergey Vladimirovich Zayats","doi":"10.4028/p-r3v8k2","DOIUrl":null,"url":null,"abstract":"Ti-based composites with advanced properties were fabricated by the explosion of the wires and magnetic-pulsed compaction methods. After the wire explosion the “metal core – oxide (or nitride) shell” structure is formed. Magnetic-pulsed treatment of such poorly conductive powder leads to the destruction of the shells and to the appearance of an electrical conductivity. This conductivity is only 4-7 times higher than that of pure titanium. As a result of the dynamic compaction of 100-150 nm powder the hot-pressed Ti+9TiO2 composition appeared to have the best combination of mechanical properties: relative density – 95 %, microhardness - 4.2 GPa, reduced modulus of elasticity – 143 GPa, creep under constant load – 105 nm. The coefficients of thermal extension of three materials with different titanium oxide content: 6, 9 and 15 wt. % were measured. The nitride-containing composites were ~30% more porous and had low mechanical properties compared to Ti+TiO2 compacts.","PeriodicalId":18861,"journal":{"name":"Nano Hybrids and Composites","volume":"49 1","pages":"17 - 22"},"PeriodicalIF":0.4000,"publicationDate":"2022-02-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nano Hybrids and Composites","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.4028/p-r3v8k2","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"NANOSCIENCE & NANOTECHNOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Ti-based composites with advanced properties were fabricated by the explosion of the wires and magnetic-pulsed compaction methods. After the wire explosion the “metal core – oxide (or nitride) shell” structure is formed. Magnetic-pulsed treatment of such poorly conductive powder leads to the destruction of the shells and to the appearance of an electrical conductivity. This conductivity is only 4-7 times higher than that of pure titanium. As a result of the dynamic compaction of 100-150 nm powder the hot-pressed Ti+9TiO2 composition appeared to have the best combination of mechanical properties: relative density – 95 %, microhardness - 4.2 GPa, reduced modulus of elasticity – 143 GPa, creep under constant load – 105 nm. The coefficients of thermal extension of three materials with different titanium oxide content: 6, 9 and 15 wt. % were measured. The nitride-containing composites were ~30% more porous and had low mechanical properties compared to Ti+TiO2 compacts.
脉冲法制备钛基复合材料
采用爆丝法和磁脉冲压实法制备了性能优良的钛基复合材料。导线爆炸后形成“金属芯-氧化物(或氮化物)壳”结构。对这种导电性差的粉末进行磁脉冲处理会导致外壳的破坏,并产生导电性的外观。这种导电性仅比纯钛高4-7倍。对100 ~ 150 nm粉体进行动态压实后,热压Ti+9TiO2复合材料的力学性能达到最佳组合:相对密度为95%,显微硬度为4.2 GPa,还原弹性模量为143 GPa,恒载蠕变为105 nm。测定了氧化钛含量分别为6%、9%和15%的三种材料的热延伸系数。与Ti+TiO2复合材料相比,含氮复合材料多孔性提高了30%,力学性能较低。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Nano Hybrids and Composites
Nano Hybrids and Composites NANOSCIENCE & NANOTECHNOLOGY-
自引率
0.00%
发文量
47
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信