Fukaya categories of plumbings and multiplicative preprojective algebras

IF 1 2区 数学 Q1 MATHEMATICS
Quantum Topology Pub Date : 2017-03-13 DOI:10.4171/QT/131
Tolga Etgu, Yankı Lekili
{"title":"Fukaya categories of plumbings and multiplicative preprojective algebras","authors":"Tolga Etgu, Yankı Lekili","doi":"10.4171/QT/131","DOIUrl":null,"url":null,"abstract":"Given an arbitrary graph $\\Gamma$ and non-negative integers $g_v$ for each vertex $v$ of $\\Gamma$, let $X_\\Gamma$ be the Weinstein $4$-manifold obtained by plumbing copies of $T^*\\Sigma_v$ according to this graph, where $\\Sigma_v$ is a surface of genus $g_v$. We compute the wrapped Fukaya category of $X_\\Gamma$ (with bulk parameters) using Legendrian surgery extending our previous work arXiv:1502.07922 where it was assumed that $g_v=0$ for all $v$ and $\\Gamma$ was a tree. The resulting algebra is recognized as the (derived) multiplicative preprojective algebra (and its higher genus version) defined by Crawley-Boevey and Shaw arXiv:math/0404186. Along the way, we find a smaller model for the internal DG-algebra of Ekholm-Ng arXiv:1307.8436 associated to $1$-handles in the Legendrian surgery presentation of Weinstein $4$-manifolds which might be of independent interest.","PeriodicalId":51331,"journal":{"name":"Quantum Topology","volume":"69 1","pages":""},"PeriodicalIF":1.0000,"publicationDate":"2017-03-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"18","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Quantum Topology","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.4171/QT/131","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 18

Abstract

Given an arbitrary graph $\Gamma$ and non-negative integers $g_v$ for each vertex $v$ of $\Gamma$, let $X_\Gamma$ be the Weinstein $4$-manifold obtained by plumbing copies of $T^*\Sigma_v$ according to this graph, where $\Sigma_v$ is a surface of genus $g_v$. We compute the wrapped Fukaya category of $X_\Gamma$ (with bulk parameters) using Legendrian surgery extending our previous work arXiv:1502.07922 where it was assumed that $g_v=0$ for all $v$ and $\Gamma$ was a tree. The resulting algebra is recognized as the (derived) multiplicative preprojective algebra (and its higher genus version) defined by Crawley-Boevey and Shaw arXiv:math/0404186. Along the way, we find a smaller model for the internal DG-algebra of Ekholm-Ng arXiv:1307.8436 associated to $1$-handles in the Legendrian surgery presentation of Weinstein $4$-manifolds which might be of independent interest.
管道与乘法预射影代数的Fukaya范畴
给定任意图$\Gamma$和$\Gamma$的每个顶点$v$的非负整数$g_v$,设$X_\Gamma$为Weinstein $4$流形,通过根据该图复制$T^*\Sigma_v$得到,其中$\Sigma_v$是$g_v$属的曲面。我们使用Legendrian手术来扩展我们之前的工作arXiv:1502.07922,其中假设所有$v$和$\Gamma$的$g_v=0$都是树,从而计算$X_\Gamma$的包装Fukaya类别(带有散装参数)。由此产生的代数被认为是由Crawley-Boevey和Shaw定义的(衍生的)乘法预投影代数(及其更高的属)[xiv:math/0404186]。在此过程中,我们找到了一个较小的模型,用于Ekholm-Ng的内部dg代数arXiv:1307.8436,与Weinstein $4$ -流形的Legendrian手术演示中的$1$ -handles相关,这可能是独立的兴趣。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Quantum Topology
Quantum Topology Mathematics-Geometry and Topology
CiteScore
1.80
自引率
9.10%
发文量
8
期刊介绍: Quantum Topology is a peer reviewed journal dedicated to publishing original research articles, short communications, and surveys in quantum topology and related areas of mathematics. Topics covered include in particular: Low-dimensional Topology Knot Theory Jones Polynomial and Khovanov Homology Topological Quantum Field Theory Quantum Groups and Hopf Algebras Mapping Class Groups and Teichmüller space Categorification Braid Groups and Braided Categories Fusion Categories Subfactors and Planar Algebras Contact and Symplectic Topology Topological Methods in Physics.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信