Analysis and characterization of thermal transport in GaN HEMTs on Diamond substrates

D. Altman, M. Tyhach, J. Mcclymonds, Samuel H. Kim, S. Graham, Jungwan Cho, K. Goodson, D. Francis, F. Faili, F. Ejeckam, S. Bernstein
{"title":"Analysis and characterization of thermal transport in GaN HEMTs on Diamond substrates","authors":"D. Altman, M. Tyhach, J. Mcclymonds, Samuel H. Kim, S. Graham, Jungwan Cho, K. Goodson, D. Francis, F. Faili, F. Ejeckam, S. Bernstein","doi":"10.1109/ITHERM.2014.6892416","DOIUrl":null,"url":null,"abstract":"The emergence of Gallium Nitride-based High Electron Mobility Transistor (HEMT) technology has proven to be a significant enabler of next generation RF systems. However, thermal considerations currently prevent exploitation of the full electromagnetic potential of GaN in most applications, limiting HEMT areal power density (W/mm2) to a small fraction of electrically limited performance. GaN on Diamond technology has been developed to reduce near junction thermal resistance in GaN HEMTs. However, optimal implementation of GaN on Diamond requires thorough understanding of thermal transport in GaN, CVD diamond and interfacial layers in GaN on Diamond substrates, which has not been thoroughly previously addressed. To meet this need, our study pursued characterization of constituent thermal properties in GaN on Diamond substrates and temperature measurement of operational GaN on Diamond HEMTs, employing electro-thermal modeling of the HEMT devices to interpret and relate data. Strong agreement was obtained between simulations and HEMT operational temperature measurements made using two independent thermal metrology techniques, enabling confident assessment of peak junction temperature. The results support the potential of GaN on Diamond to enable a 3X increase in HEMT areal dissipation density without significantly increasing operational temperature. Such increases in HEMT power density will enable smaller, higher power density Monolithic Microwave Integrated Circuits (MMICs).","PeriodicalId":12453,"journal":{"name":"Fourteenth Intersociety Conference on Thermal and Thermomechanical Phenomena in Electronic Systems (ITherm)","volume":"79 1","pages":"1199-1205"},"PeriodicalIF":0.0000,"publicationDate":"2014-05-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"43","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Fourteenth Intersociety Conference on Thermal and Thermomechanical Phenomena in Electronic Systems (ITherm)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ITHERM.2014.6892416","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 43

Abstract

The emergence of Gallium Nitride-based High Electron Mobility Transistor (HEMT) technology has proven to be a significant enabler of next generation RF systems. However, thermal considerations currently prevent exploitation of the full electromagnetic potential of GaN in most applications, limiting HEMT areal power density (W/mm2) to a small fraction of electrically limited performance. GaN on Diamond technology has been developed to reduce near junction thermal resistance in GaN HEMTs. However, optimal implementation of GaN on Diamond requires thorough understanding of thermal transport in GaN, CVD diamond and interfacial layers in GaN on Diamond substrates, which has not been thoroughly previously addressed. To meet this need, our study pursued characterization of constituent thermal properties in GaN on Diamond substrates and temperature measurement of operational GaN on Diamond HEMTs, employing electro-thermal modeling of the HEMT devices to interpret and relate data. Strong agreement was obtained between simulations and HEMT operational temperature measurements made using two independent thermal metrology techniques, enabling confident assessment of peak junction temperature. The results support the potential of GaN on Diamond to enable a 3X increase in HEMT areal dissipation density without significantly increasing operational temperature. Such increases in HEMT power density will enable smaller, higher power density Monolithic Microwave Integrated Circuits (MMICs).
金刚石衬底上GaN hemt的热输运分析与表征
基于氮化镓的高电子迁移率晶体管(HEMT)技术的出现已被证明是下一代射频系统的重要推动者。然而,目前在大多数应用中,热方面的考虑阻碍了氮化镓的全部电磁潜力的开发,将HEMT的面功率密度(W/mm2)限制在电限制性能的一小部分。金刚石上氮化镓技术的发展是为了降低氮化镓hemt的近结热阻。然而,氮化镓在金刚石上的最佳实现需要彻底了解氮化镓、CVD金刚石和氮化镓在金刚石衬底上的界面层中的热传输,这在以前没有得到彻底的解决。为了满足这一需求,我们的研究采用HEMT器件的电热建模来解释和关联数据,对金刚石衬底上GaN的组成热特性进行了表征,并对金刚石HEMT上运行GaN的温度进行了测量。利用两种独立的热测量技术,在模拟和HEMT工作温度测量之间获得了强有力的一致性,从而能够对峰值结温进行可靠的评估。研究结果支持GaN在金刚石上的潜力,使HEMT的面积耗散密度增加3倍,而不会显著提高工作温度。HEMT功率密度的增加将使更小、更高功率密度的单片微波集成电路(mmic)成为可能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信