Improvement of silicon microdisk resonators with movable waveguides by hydrogen annealing treatment

Taiyu Okatani, Yuichi Sato, K. Imai, K. Hane, Y. Kanamori
{"title":"Improvement of silicon microdisk resonators with movable waveguides by hydrogen annealing treatment","authors":"Taiyu Okatani, Yuichi Sato, K. Imai, K. Hane, Y. Kanamori","doi":"10.1116/6.0000971","DOIUrl":null,"url":null,"abstract":"In silicon photonics, silicon microdisk resonators with movable waveguides driven by electrostatic comb-drive actuators have been used as wavelength-selective switches. However, the sidewall roughness of silicon waveguides formed by the etching process is the main cause of optical loss in such devices, which leads to the deterioration of the wavelength selectivity. In this study, we fabricated a silicon microdisk resonator with a movable waveguide and performed a hydrogen annealing treatment as a postprocessing step to remove the sidewall roughness. By using scanning electron microscopy, a reduction in sidewall roughness was confirmed following the hydrogen annealing treatment. Then, the extinction ratio at the through port was evaluated while changing the gap between the microdisk and the movable waveguide. A dip in the extinction ratio was observed at the resonant wavelength while decreasing the gap, which indicated that the fabricated device successfully functioned as a wavelength-selective switch. Due to the hydrogen annealing treatment, the quality factor of the dip increased from 7102 to 37 402. These results show that the hydrogen annealing treatment can be used as a postprocessing step and is helpful for improving the wavelength selectivity of silicon photonic wavelength-selective switches.","PeriodicalId":17652,"journal":{"name":"Journal of Vacuum Science & Technology. B. Nanotechnology and Microelectronics: Materials, Processing, Measurement, and Phenomena","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2021-04-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Vacuum Science & Technology. B. Nanotechnology and Microelectronics: Materials, Processing, Measurement, and Phenomena","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1116/6.0000971","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

In silicon photonics, silicon microdisk resonators with movable waveguides driven by electrostatic comb-drive actuators have been used as wavelength-selective switches. However, the sidewall roughness of silicon waveguides formed by the etching process is the main cause of optical loss in such devices, which leads to the deterioration of the wavelength selectivity. In this study, we fabricated a silicon microdisk resonator with a movable waveguide and performed a hydrogen annealing treatment as a postprocessing step to remove the sidewall roughness. By using scanning electron microscopy, a reduction in sidewall roughness was confirmed following the hydrogen annealing treatment. Then, the extinction ratio at the through port was evaluated while changing the gap between the microdisk and the movable waveguide. A dip in the extinction ratio was observed at the resonant wavelength while decreasing the gap, which indicated that the fabricated device successfully functioned as a wavelength-selective switch. Due to the hydrogen annealing treatment, the quality factor of the dip increased from 7102 to 37 402. These results show that the hydrogen annealing treatment can be used as a postprocessing step and is helpful for improving the wavelength selectivity of silicon photonic wavelength-selective switches.
用氢退火法改进可动波导硅微盘谐振器
在硅光子学中,带有可移动波导的硅微盘谐振器被静电梳状驱动作动器用作波长选择开关。然而,蚀刻过程形成的硅波导侧壁粗糙度是导致器件光损耗的主要原因,导致波长选择性的恶化。在这项研究中,我们制作了一个带有可移动波导的硅微盘谐振器,并进行了氢退火处理作为后处理步骤来去除侧壁粗糙度。通过扫描电镜观察,氢退火处理后的侧壁粗糙度有所降低。然后,通过改变微盘与可动波导之间的间隙,计算通口处的消光比。在谐振波长处,消光比下降,间隙减小,表明该器件成功地实现了波长选择开关的功能。经氢退火处理后,镀层的质量因数由7102提高到37 402。这些结果表明,氢退火处理可以作为后处理步骤,有助于提高硅光子波长选择开关的波长选择性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信