Experimental evaluation of factors affecting performance of concentrating photovoltaic/thermal system integrated with phase-change materials (PV/T-CPCM)
Zhaoyang Luan , Lanlan Zhang , Xiangfei Kong , Han Li , Man Fan
{"title":"Experimental evaluation of factors affecting performance of concentrating photovoltaic/thermal system integrated with phase-change materials (PV/T-CPCM)","authors":"Zhaoyang Luan , Lanlan Zhang , Xiangfei Kong , Han Li , Man Fan","doi":"10.1016/j.enss.2023.06.001","DOIUrl":null,"url":null,"abstract":"<div><p>The photovoltaic/thermal (PV/T) system is a promising option for countering energy shortages. To improve the performance of PV/T systems, compound parabolic concentrators (CPCs) and phase-change materials (PCMs) were jointly applied to construct a concentrating photovoltaic/thermal system integrated with phase-change materials (PV/T-CPCM). An open-air environment is used to analyze the effects of different parameters and the intermittent operation strategy on the system performance. The results indicate that the short-circuit current and open-circuit voltage are positively correlated with the solar irradiance, but the open-circuit voltage is negatively correlated with the temperature of the PV modules. When the solar irradiance is 500 W⋅m<sup>−2</sup> and the temperature of the PV modules is 27.5 ºC, the short-circuit current and open-circuit voltage are 1.0 A and 44.5 V, respectively. Higher solar irradiance results in higher thermal power, whereas the thermal efficiency is under lower solar irradiance (136.2–167.1 W⋅m<sup>−2</sup> is twice under higher solar irradiance (272.3–455.7 W⋅m<sup>−2</sup>). In addition, a higher mass flow rate corresponds to a better cooling effect and greater pump energy consumption. When the mass flow rate increases from 0.01 to 0.02 kg⋅s<sup>–1</sup>, the temperature difference between the inlet and outlet decreases by 1.8 ºC, and the primary energy-saving efficiency decreases by 0.53%. The intermittent operation of a water pump can reduce the energy consumption of the system, and the combination of liquid cooling with PCMs provides better thermal regulation and energy-saving effects under various conditions.</p></div>","PeriodicalId":100472,"journal":{"name":"Energy Storage and Saving","volume":"3 1","pages":"Pages 30-41"},"PeriodicalIF":0.0000,"publicationDate":"2023-06-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2772683523000304/pdfft?md5=45a6ddd53592770c55cc60e6c88c1a36&pid=1-s2.0-S2772683523000304-main.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Energy Storage and Saving","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2772683523000304","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
The photovoltaic/thermal (PV/T) system is a promising option for countering energy shortages. To improve the performance of PV/T systems, compound parabolic concentrators (CPCs) and phase-change materials (PCMs) were jointly applied to construct a concentrating photovoltaic/thermal system integrated with phase-change materials (PV/T-CPCM). An open-air environment is used to analyze the effects of different parameters and the intermittent operation strategy on the system performance. The results indicate that the short-circuit current and open-circuit voltage are positively correlated with the solar irradiance, but the open-circuit voltage is negatively correlated with the temperature of the PV modules. When the solar irradiance is 500 W⋅m−2 and the temperature of the PV modules is 27.5 ºC, the short-circuit current and open-circuit voltage are 1.0 A and 44.5 V, respectively. Higher solar irradiance results in higher thermal power, whereas the thermal efficiency is under lower solar irradiance (136.2–167.1 W⋅m−2 is twice under higher solar irradiance (272.3–455.7 W⋅m−2). In addition, a higher mass flow rate corresponds to a better cooling effect and greater pump energy consumption. When the mass flow rate increases from 0.01 to 0.02 kg⋅s–1, the temperature difference between the inlet and outlet decreases by 1.8 ºC, and the primary energy-saving efficiency decreases by 0.53%. The intermittent operation of a water pump can reduce the energy consumption of the system, and the combination of liquid cooling with PCMs provides better thermal regulation and energy-saving effects under various conditions.